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I. INTRODUCTION 

In 1931, Walter A. Shewhart originated the control chart for the 

attainment of statistical stability of a production process. 

Currently, control charts are used in a wide variety of production, 

research, and development environments. This chapter presents a 

summary of the main contributions and current state of the art in the 

area of control chart design. The literature review chapter covers the 

most important developments in the area of analysis, design, and 

optimization of control charts from statistical, semieconomical, and 

economical criteria in the last three decades. The following chapters 

address some open questions in the area of design of X-bar cliarts when 

"warning lines" are used as part of the control scheme. Mathematical 

and statistical tools necessary for answering these questions are 

discussed and numerical examples are presented to illustrate the 

relevance of this work. 

The following paragraphs provide some background information on 

control charts: their uses, some of the most commonly used control 

schemes, and the primary considerations involved in the design of 

control charts. 

A. The Uses of Control Charts 

Although the original intention of such control chart was to 

attain a state of statistical stability for a given process ("process 
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control"), since its introduction, many modifications have been sug­

gested and other schemes have been introduced. Currently, Shewhart 

control charts are being used for at least one of the following 

different purposes. 

1. Testing for statistical control 

One of the uses of the control charts that was first contemplated 

is determining whether a process has achieved a state of statistical 

control. For this purpose, a statistic to be charted is selected 

depending on the process to be controlled and appropriate data are 

gathered and checked against trial control limits. 

2. Maintaining current control 

One of the many problems that arises in the applications of 

statistics in industry is the detection of changes in parameters 

specifying the quality of the output from a production process, so that 

some corrective action can be taken to restore the parameters to 

satisfactory values. 

Many control charts are being used to give an alarm when it is 

believed that the process has gone out of statistical control. Control 

limits computed from a given standard are used to detect when a 

process, which is in control at certain target values of the 

distribution parameters, departs from those values. Shewhart 

recommended the use of 3a limits as action limits, that is, rectifying 
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action should be taken if the observed value of the statistic being 

charted is plus or minus three or more standard deviations from its 

target value. 

Little justification has been given for the selection of these 

limits and many alternatives of this control method have been 

introduced. One nf these alternatives that is widely used is to call 

for corrective action when a certain number of points out of a 

specified number of observations fall outside of a predetermined 

"warning line," 

3. Historical search 

The visual record provided by a Shewhart chart is a great help in 

identifying when changes in the process characteristics occurred so the 

search for assignable causes is facilitated. 

B. Control Limits and Control Rules 

Assume that a given process is in statistical control and that the 

distribution of the relevant statistic (sample mean, standard 

deviation, range, fraction defective,...) is known. Several schemes 

have been suggested to control a parameter of this distribution at a 

target level. Some of these schemes are: 
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1. Western Electric Company Statistical Quality Control Handbook (1956) 

Declare the process to be out of control if any of the following 

situations occurs: 

o A single point falls outside of the +3a limits. 

o Two out of three successive points fall above the +2a limit, 

o Two out of three successive points fall below the -2a limit, 

o Four out of five successive points fall above the +la limit, 

o Four out of five successive points fall below the -la limit, 

o Eight successive points fall above the target value. 

o Eight successive points fail below the target value. 

2. Acheson J. Duncan (1974) 

Declare the process to be out of control if any of the following 

situations occurs: 

o A single point falls outside of the +3a limits. 

o One or more points is in the vicinity of a warning limit, 

o A run of seven or more points fall above or below the central 

line on the control chart. 

o A run of 2 or 3 points fall outside of ±2a limits. 

o A run of 4 or 5 points fall outside of +lo limits. 

o Cycles or other nonrandom patterns in the data. 

3. Grant and Leavenworth (1988) 

Declare the process to be out of control if any of the following 

situations occurs: 
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0 A run of seven or more points fall above or below the central 

line on the control chart. 

0 Ten of eleven consecutive points fall on the same side of the 

central line on the control chart. 

0 Twelve of fourteen consecutive points fall on the same side of 

the central line on the control chart. 

0 Fourteen of seventeen consecutive points fall on the same side 

of the central line on the control chart. 

0 Sixteen of twenty consecutive points fall on the same side of 

the central line on the control chart. 

4. Wetherill (1977) 

Declare the process to be out of control if any of the following 

situations occurs: 

0 A single point falls outside the +3a limits. 

0 Two points fall in a row outside of the +2a limit. 

0 Two points fall in a row outside of the -2a limit. 

C. Selection of Control Limits and Control Rules 

1. The Tvpe-I Tvpe-II error approach 

Consider a control chart with the simple control rule: "Declare 

the process to be out of control if a single point falls above xc limit 

or below -xa limit." For a given x, there are two possible types of 

errors when control charts like this are used. The first occurs when 
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the process involved is in control but a point falls outside the 

control limits due to intrinsic process variation and randomness. 

Consequently, it is incorrectly concluded that the process is not in 

control, the process is stopped, an attempt to locate the cause of a 

nonexistent problem is made, and then a cost due to production lost 

and wasted time is incurred. This type of error is referred to as 

Type-I error. 

The second error, referred to as Type-II error, occurs when the 

process involved is out of control but the sampled point falls within 

the control limits due to chance. As a result, it is incorrectly 

concluded that the procesj is in control and costs associated with any 

resulting increase in nonconforming output are incurred. 

The size of the risk of a Type-I error, a, depends only on the 

choice of the control limits; wider limits reduce the risk of this 

error and, as a result, this risk encourages the adoption of wide 

control limits. On the other hand, the risk of a Type-II error, ^, is 

a function of the control limits and the degree to which the process is 

out of control; this risk encourages the adoption of narrow control 

limits. 

The optimum control limits may be defined as those that minimize 

the total cost of making an error (the cost of a Type-I error plus the 

cost of a Type-II error). Consequently, if the cost of examining a 

process to identify the cause of a presumable out-of-control situation 

is high, wider limits should be adopted; conversely, if that cost is 

low, narrower limits should be selected. If the cost of nonconforming 
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output produced by a process is considerable, narrower control ii.iiits 

should be favored; otherwise, wider limits should be selected. 

If the cost of a Type-I error and the cost of a Type-II error are 

about the same, wide control limits should be chosen, and attention 

should be given to decreasing the resulting risk of a Type-II error by 

increasing the sample size; in addition, to reduce the duration of any 

out-of-control situation which might occur, more frequent samples 

should be taken. Finally, if past experience with a process reveals 

that an out-of-control condition happens quite frequently, narrower 

control limits should be preferred because the large number of 

possibilities to make a Type-II error; on the other hand, if the rate 

at which the process goes out of control is low, wider limits will be 

favored. 

Unfortunately, it seems that most organizations adopt ±3a limits 

as a matter of course and try to minimize the total cost by determining 

the optimal sample size and the best sample frequency. 

2. The average run length (A . R . L.) approach 

When complex control rules, such as those listed in Section I.B 

are used to control a process, risks of the first and second type are 

not the proper quantities to consider as criteria of how good a given 

control rule is. It is obvious that any control rule will give a signal 

some time even though the process is operating under control and it is 

also certain to give a signal some time after a deterioration in the 
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process has occurred. The relevant questions here are: "How often?" 

in the first case and "How quickly?" in the second one. 

A quantity of fundamental interest is the average run length 

(A.R.L.) of a given set of control rules (or process inspection 

scheme). The average run length is the expected number of samples 

taken before action is taken when the quality of the process remains 

constant (not necessarily at the target value). A large number of 

samples is desired before receiving an out-of-control signal when the 

process is in control and a small number of samples ("fast response 

time") is desired when the process has departed from target. These are 

conflicting goals and in practice some kind of compromise between these 

two requirements has to be accepted. 

If the cost of examining a process to identify the cause of a 

presumable out-of-control situation is high, a process inspection 

scheme with a very long A.R.L.'s should be selected. On the other 

hand, if the cost of nonconforming output produced by a process is 

considerable, a process inspection scheme with a very short off-

target A.R.L. should be preferred. 

Little research has been done on the determination of the A.R.L. 

of the inspection schemes described in Section I.E. and their 

relative merits. However, J. I. Weindling (1967) has shown that for 

any control chart with warning and action limits, with a fixed sample 

size and process variance, the average run length is greatest when the 

process is in control and decreases strictly with an increase in the 

absolute value of a shift in the process mean. Consequently, an A.R.L. 
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curve, as a function of the process mean, has a shape similar to that 

of the operating characteristic of a two-tailed test, and may be used 

to compare the effectiveness of two control procedures. 

3. The economic decision model approach 

The design of control charts with respect to economic criteria has 

been the subject of considerable study during the last thirty years. 

Several different process models have been developed and applied to 

most of the major types of control charts. 

In order to formulate an economic model for the design of a con­

trol chart, certain assumptions about the behavior of the production 

process are required. Most of the economic models that have been 

developed incorporate, explicitly or implicitly, the following 

assumptions to some degree. 

a. The production process is assumed to be characterized by a 

single in-control state but it may have several out-of-control 

states (usually each of them associated with a particular type 

of assignable cause). 

b. The residence (or waiting) time of the production process in 

each state (in control or out of control) is assumed to be 

exponentially distributed and the transitions between states 

are assumed to be instantaneous. 

c. It is assumed that once a transition to an out-of-control 

state has occurred, the process can only be returned to the 



www.manaraa.com

10 

in-control condition by an operator intervention after an 

action signal on the control chart. 

Most of the economic models consider three categories of costs: 

the cost of sampling and testing, the costs associated with the produc­

tion of nonconforming items, and the costs associated with the investi­

gation of an action signal and with the correction of any assignable 

causes found. The cost of sampling and testing is assumed to be a 

linear function of the sample size; because the difficulty associated 

with the estimation of these costs a more complex relationship is proba­

bly inadequate. The cost associated with producing nonconforming items 

consists of the cost of repairing or replacing units covered by-

warranties or guarantees, losses resulting from product liability 

claims against the company, and market share reduction because of 

customer's dissatisfaction. The costs of searching for an assignable 

cause and possible correcting the process following an out-of-control 

signal have been modeled in two different ways. Some researchers 

suggest that the costs of investigating for false alarms are different 

from the costs of correcting assignable causes and, consequently, these 

two situations must be represented in the model by two different cost 

coefficients; in addition, some authors suggest using a different cost 

figure for each type of assignable cause. Other researchers argue 

that, since in most cases small shifts are difficult to find but easy 

to fix, while large shift are easy to find but difficult to correct, 

accuracy is not lost if only a single cost coefficient is used to 

represent this cost. 



www.manaraa.com

11 

Economic models are generally formulated as a total cost per unit 

time function. The production, monitoring, and adjustment process may 

be thought of as a series of cycles. Each cycle begins with the 

process being in the in-control state; at some point during the cycle 

an assignable cause occurs and eventually an action signal is generated 

which leads to the discovery of the assignable cause; the cycle ends 

when the process is returned to the in-control state. If E(CT) denotes 

the expected duration of the cycle and E(CC) denotes the expected total 

cost incurred during the cycle, the expected cost per unit time is 

E(C) = E(CC)/E(CT). Optimization techniques are then applied to this 

equation to find the economically optimum control chart design. 
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II. LITERATURE REVIEW 

In the last four decades, many volumes of journals have been 

filled with the exposition, application, modification, and economic 

design of control charts. Many papers have been published on innova­

tive concepts on control chart techniques. It is impossible to include 

this vast amount of knowledge in just a few pages; consequently, this 

chapter will not include and deal with all of the many modifications 

and refinements of the techniques of control charts. However, we 

attempt to highlight the most important developments in this field, 

specially those related to Shewhart control charts and their ramifica­

tions, to the determination of average run lengths for control charts 

with "warning limits", and to the economic and semieconomic design of 

X-bar control charts. 

A. Semieconomic Design of Control Charts 

Early work on the design of conventional Shewhart control charts 

was carried out by several researchers. One of the first papers ad­

dressing the effectiveness of Shewhart control charts was written by L. 

A. Aroian and H. Levene (1950). In this paper the authors assume a 

sampling scheme only with control lines in which there is a constant 

probability a, at each decision point, of saying that is out of 

control (when the process is in control) and that, when the process 

suddenly goes out of control, there is a constant probability j} of 
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taking action at each decision point until remedial action has been 

taken. This framework is used to derive (for production at a constant 

level and for erratic production) how often the samples should be taken 

and the run-length distributions of Shewhart control charts used alone. 

One of the first and most influential papers in the area of econo­

mic modeling of quality control systems is due to M. A. Girshick and H. 

Rubin (1952). They consider a system, producing items with a quality 

characteristic, that can be in one of four possible states; state 1 is 

considered to be the in-control state, state 2 is an out-of-control 

state, and states 3 and 4 are repair states. The output quality 

characteristic obviously depends upon the process state and it is 

described by a probability density function in states 1 and 2. When 

the system is in state 1 there is a constant probability of shifting 

into state 2; the systems is assumed to be not self-correcting and, 

consequently, once the process is in state 2, it has to go through one 

of the repair states in order to return to the in-control state. The 

residence time in the repair states are considered to be different but 

constant and discrete (the time unit used is defined as the time 

required to produce one item while the process is in state 1). The 

economic criterion used by Girshick and Rubin is to maximize the 

expected income from the process. Although this paper is of 

significant theoretical value, the use of the model in practice is 

limited because the optimal control rules are difficult to derive (they 

depend on the solution of integral equations). 
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Girshick and Rubin were the first authors to propose the expected 

income per unit time as a criterion for the design of quality control 

systems. Later researchers investigated generalized formulations of 

the Girshick-Rubin model, among them were I. R. Savage (1962), J. A. 

Bather (1963), S. M. Ross (1971), and C. C. White (1974). However, 

most of their findings are of theoretical interest only because, in 

general, they do not lead to simple process control rules. 

Most of the work of early researchers could be classified as semi-

economic design either because they failed to include all the relevant 

costs or because they did not use a formal optimization procedure to 

minimize the cost function. For example, G. H. Weiler (1954) suggested 

that, for an X-bar chart, the optimum sample size should minimize the 

total amount of inspection required to detect a specified shift. If 

the shift is from an in-control state, M, to an out-of-control state, 

u+ha, the optimal sample size is inversely proportional to the square 

of 5. Similar approaches were used by Weiler in studies of other 

control charts. Other semieconomic analyses were used by D. J. Cowden 

(1957) and N. N. Barish and N. Hauser (1963). 

H. M. Taylor (1965) showed that control procedures with fixed 

sample size at constant time intervals cannot be optimal. However, 

these kind of rules are widely used in practice because of their 

administrative simplicity. Taylor suggested that sample size and 

sampling frequency should be determined based on the posterior 

probability that the process is in an out-of-control state. 
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B. Economic Design of Control Charts 

An early attempt to deal with a fully economical model was made by 

A. J. Duncan (1956). In this paper, Duncan, relying on the earlier 

work of Girshick and Rubin (1952), establishes a criterion that 

measures approximately the average net income of a process under 

surveillance of an X-bar chart when the process is subject to random 

shifts in the process mean. The quality control rule assumed is that an 

assignable cause is looked for whenever a point falls outside the 

control limits. The criterion given is for the case in which it is 

assumed that the production process is not stopped while the search for 

the assignable cause is in progress, nor is the cost of adjustment or 

repair and the cost of bringing the process back into a state of 

control, after the assignable cause is discovered, charged to the 

control chart program. Duncan's paper shows how to determine the 

sample size, the interval between samples, and the control limits that 

will yield approximately maximum average income. He also discusses 

numerical examples of optimum design to illustrate how variation in the 

various risk and cost factors affects the optimum. 

Duncan assumes that the assignable cause occurs according to a 

Poisson process with a rate of 0 occurrences per hour and shows that 

if samples are taken every h hours, the average time of occurrence 

within an interval between samples is 

r = [ 1 - (l+9h)exp(-9h) ]/[ Ô(l-exp(-0h)) ]. 
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He also shows that the expected length of a cycle (in control/ 

detection of an assignable cause/ elimination of the assignable cause/ 

in control) is 

E ( T) = 1/ E  + h/(l-g) - T + gn + D  ,  

and that the expected loss per hour incurred by the process is 

CI + C2 n C4 [E(T)-l/e] + C3 + C3'a exp(-5h)/(l- exp(gh)) 

h E ( T )  

where 

Cl + C2 n = Cost of taking a sample of size n, 

C3 = Cost of finding an assignable cause. 

C3'= Cost of investigating a false alarm. 

C4 = Difference between the net income per hour of operation in the in-

control state and the net income per hour of operation in the 

out-of-control state. 

1-^ = The power of the control chart, i.e., the probability that 

an action signal will be generated on a particular sample 

when the process is really out of control. 

g = (Time required to take and interpret a sample of size n)/n. 

D = Time required to find an assignable cause following an action 

signal. 

a = Probability that an action signal will be generated on a 

particular sample when the process is really in control. 

Some simplification of this cost function is possible. Duncan 

notes that the following two approximations can be made 

r = h( 1 - dh/6)/2. 
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and 

a exp(-0h)/[l-exp(-0h)] = a/(dh) 

and, consequently, the expected loss per hour can be approximated by 

E(l) = (C1+C2 n)/h + [ E  B  C4 + a C3'/h + 6  C3]/(l+9 B )  

where 

B = [l/(l-2)-l/2+9h/l2]h + G N  +  D .  

Many researchers have presented minimization algorithms for 

Duncan's model. For example, A. L, Goel, S. C. Jain, and S. M. Wu 

(1968) devised an iterative method for optimizing the expected hourly 

loss that produces the exact optimum solution. Their algorithm con­

sists of solving an implicit equation in the design variables the sam­

ple size, n, and the control limit factor, k, and an explicit equation 

for h, the sampling interval. The use of this procedure not only pro­

vides the exact optimum solution but also gives valuable information so 

that the sensitivity of the optimum cost can be evaluated. In their 

paper, Goel, Jain and Wu also discuss the nature of the cost surface 

and the effect of the design variables by using cost contours. In addi­

tion, they evaluate the effect of two parameters, the delay factor (the 

rate at which the time between the taking of the sample and the plot­

ting of a point on the X-bar chart increases with the sample size) and 

the average time for an assignable cause to occur (1/9), on the opti­

mum design. A comparison of the results found by Goel, Jain, and Wu 

with those found by Duncan shows that their algorithm yields designs 

with smaller cost and in many cases the difference is quite 

significant. Their procedure is superior to Duncan's approximate 
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optimization technique specially in situations where either C4 or g are 

large, or where 5 is small. 

W. K. Chiu and G. B. Wetherill (1974) proposed a very simple semi-

economic scheme for the design of a control plan using an X-bar chart, 

that can be applied at the workshop level. Their approximate 

procedure for optimizing Duncan's model utilizes a constraint on the 

power of the test; the quality control engineer selects an adequate 

value for the power, l-ji, to acquire a desired protection against 

inferior quality (the recommended value is either 1-;? = 0.90 or 

1-0 = 0.95). Then, he determines the values of the control limits 

coefficients and the sample size from a table provided by the authors 

and the value of h, the sample interval, is calculated by a simple 

formula. This procedure usually produces a design close to the true 

optimum; in fact, despite its simplification of the problem, this 

method produces, in most of the cases, better solutions than Duncan's 

more elaborated procedure with the added advantage that the power can 

now be partly controlled by the engineer. 

The expected hourly cost function, E C L), can also be minimized by 

using an unconstrained optimization or search technique coupled with a 

digital computer program for repeated evaluations of the cost function. 

This is the methodology that most recent researchers have taken. 

Pattern search and various modifications of Fibonacci search have been 

used effectively. For example, D. C. Montgomery (1982) presented a 

computer program for the optimization of Duncan's approximated expected 

loss function. Given fixed and variable sampling costs, the costs of 
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investigating action signais, the penalty cost of production in the out-

of-control state, and other parameters describing process performance, 

the program finds the sample size, control limit width and interval 

between samples that minimizes the expected total costs per unit time. 

Most of the cost models assume that given that the production 

process remains in control at a certain point in time, the probability 

of its deterioration by some future time is independent of the past 

history of the process. K. R. Baker (1971) suggests that this 

assumption is one of mathematical convenience only and that the 

robustness of the Poisson model is open to some question, and he 

proposes two process models that allow this assumption to be 

investigated. His models consider a discrete time process in which the 

output quality characteristic of interest is continuous. The process 

starts in control, with a quality-characteristic mean at a level u and 

its standard deviation, a; the occurrence of an assignable cause 

results in shift in the process mean to an out-of-control level denoted 

by u+5a. At some later time, the monitoring process detects this 

shift and action is taken to restore the process to its in-control 

state; the cycle then repeats. 

In his first model, Baker shows that the long-run average time 

cost is 

ATCl = CI n + {C2 (l+a E [ T]) + C3/a' } / { E[T] + l/a'} 

where 

CI n = Cost of taking a sample of size n. 
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C2 = Cost of shutting down the process and searching for an assignable 

cause. 

C3 = Cost of operating out of control for one period. 

a = Probability of getting an out-of-control signal when the 

process is in control. 

a'= Probability of getting an out-of-control signal when the 

process is out cf control. 

E[T] = Expected value of number of periods that the process remains in 

control, T; T is assumed to be a random variable with a 

discrete probability distribution p(t) = Pr{T=t}, t=0,l,... 

In his second model. Baker assumes that the time in control is not 

independent of the number of false alarms that occur and shows that the 

relevant cost function is 

ATC2 = CI n + ( C2 + C3 E [ S ' ]  ) / E [ D ]  

where 01, C2, and C3 are the same costs defined above, and 

E[S'] = Expected value of the run length out of control prior to a 

particular signal for action. 

E [ D] = Expected value of the length of a cycle, i.e., the number of 

periods following the conclusion of a search until the next 

signal for action. 

Baker points out that if the distribution of the duration of the 

process in control is geometric, then the cost function ATC2 reduces to 

ATCl. He also investigates in some detail the case where the discrete 

probability function used to model the process failure mechanism is 

Poisson and compares it to the usual geometric process; in the Poisson 
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case, smaller sample sizes and narrower control limits result than 

those that would be economically optimal in the geometric case; the 

narrower limits arise because false alarms can be beneficial; this is 

due to the fact that a false alarm can delay a true shift because the 

in-control run length does not have the memoryless property of the 

geometric distribution. He concludes that substantial cost penalties 

may be incurred if an incorrect process failure mechanism is assumed 

and that, consequently, it is essential to examine and understand the 

physical behavior of the deterioration process so that the principle of 

economic design can be usefully and validly implemented, 

I. S. Gibra (1971) proposed a single assignable cause economical 

model for the determination of the parameters (the sample size, n, the 

control limits, ka, and the intersample interval, h) of an X-bar 

chart. His model is similar to Duncan's model (1956) in that the 

process is assumed to be in operation during the search for an 

assignable cause and in that the time between assignable causes follows 

an exponential distribution with parameter 6, However, Gibra's model 

assumes that the sum of times required to take and inspect a sample, 

compute and plot a sample average, and to discover and eliminate the 

assignable cause, has an Erlang distribution with parameters X and r. 

In the development of the model, Gibra introduces the concept of worst 

cycle quality level (WCQL). He defines a quality cycle as the interval 

between two successive periods of statistical stability and the worst 

cycle quality level as the permissible mean expected number of 

nonconformings produced within a quality cycle. The value of the WCQL 
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determines an upper bound for the mean expected number of nonconforming 

units produced during some known production periods. His objective is 

to determine the optimal parameters of the X-bar chart so as to 

minimize the cost function associated with the statistical phase of 

production, subject to the restriction: if the mean shifts by ± 5CT, 

this shift will be detected and eliminated within a prescribed time 

interval, say, R, with a specified probability. 

Gibra formulates a cost function that includes the cost of 

inspection and charting, a cost incurred for detecting and eliminating 

the assignable cause, and a penalty cost due to nonconforming units. 

The expected total cost per unit time is then 

C4 n + C5 CI a r e 
E ( C )  + c2 r 6 + +  c 3 ( i - r )(wo - W I )  

h exp(Oh) - 1 
where 

a = Probability of a false alarm. 

r = l/[ 6h/p + ôh/{exp(6h)-l} + rd/\ ] = Long run 

probability that process is in state of control. 

CI = Cost for looking for an assignable cause when false alarm is 

signalled. 

C2 = Cost of detecting and eliminating an assignable cause. 

C3 = Penalty cost incurred per nonconforming item. 

C4 = Cost/unit of inspection and sampling. 

C5 = Overhead cost/inspected sample for maintaining the X-bar chart, 

h = Sample interval. 

n = Sample size. 
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p = Probability that an assignable cause is detected when the 

process mean sustains a shift of 5a. 

Wo = Expected number of nondefective items produced per unit of time 

when the process is in a state of control. 

W1 = Expected number of nondefective items produced per unit of time 

when the process is in a state of out of control. 

Gibra (1967) also investigated the optimal economical design of an 

X-bar chart used to monitor a production process in which the mean 

drifts constantly over time; this kind of situations occur in tool wear 

in machining, drawing stamping, and molding operations. The relevant 

cost function in this case is 

E(C) = [Cr + C3 a i]/[Wl a f + W2 a (l-f)] - C3 

where 

E(C) = Total expected cost per unit. 

Cr = Cost cf resetting the process mean to its original value. 

C3 = Penalty cost incurred per nonconforming item. 

a = Length of production run in units of time. 

i = Production rate in pieces per unit time. 

W1 = Average proportion of nondefective items produced per unit time, 

r = Average proportion of time that the process is in state of 

statistical stability. 

W2 = Average proportion of nondefective items per unit time due to 

the combined effect of the drift and the shift. 
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Then, the optimal control procedure determines decision rules for 

shutting the process down for adjustment due to drift, as well as for 

the occurrence of an assignable cause. The control rules minimizes 

adjustment costs and costs due to the production of nonconforming 

items. 

A. J. Duncan (1971) extended his single assignable cause model for 

the X-bar chart to allow for the occurrence of s independent assignable 

causes. His models assumes that the process is either in control or it 

has been disturbed by the occurrence of the jth assignable cause which 

produces a shift in the process mean of 5(j)ff where a is the 

standard deviation (assumed to be fixed and known) of X and 5(j) is a 

positive constant. When the process is in control, the occurrence 

times of the various assignable causes are assumed to be independent 

exponential random variables with parameters 6(j), j = 1, 2, 3, ..., 

s, and when the process has been disturbed by a given assignable cause, 

the models assumes that the process is free from the occurrence of 

other assignable causes. Under these assumptions, Duncan shows that 

the expected loss-cost per unit time is: 

s s 
I 0(j)B(j)M(j) + 9 A T + I 9(j)w(j) 
j=l j=l b + cn 

E(L) + 
s h 

1 + 1 e(j)B(j) 
j=l 

where 

B(j) = h/p(j) - T C J) + gn + D(j) = Average total time between the 

occurrence of the jth assignable cause and its discovery. 
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h = Time between samples. 

P(j) = Probability that a point falls outside the control limits 

after the occurrence of the jth assignable cause. 

r(j) = {1-Cl+0(J)h]exp(-e(j)h)}/{0(j)[l-exp(-ô(j)h)]} = Average 

time of occurrence of assignable cause j within the sample 

interval, given that the jth cause occurs between two sampl 

g = (Time required to take and interpret a sample of size n)/n. 

D(j) = Average time taken to discover the jth assignable cause; it 

assumed that the process is kept running at least until the 

assignable cause is found. 

M(j) = Increases loss per unit time of operation due to the presen 

the jth assignable cause. 

A = Average number of false alarms before the occurrence of an 

assignable cause. 

9 = I#(j); l/B = Expected time at which the process goes out of 

control. 

T = Cost per occasion of looking for an assignable cause when none 

exists. 

W(j) = Average cost of finding the jth assignable cause when it 

occurs. 

b = Cost per sample of sampling, testing, and plotting that is 

independent of the sample size. 

c = Variable cost per item of sampling, testing, and plotting. 
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Duncan uses direct search methods to find a local minimum of this 

cost function; initially he treats the sample size, n, as a continuous 

variable, but the fractional n yielded by the search procedure is 

rounded both up and down, and then the search procedure is applied 

again to find the minimizing values for h, the sampling interval, and 

k, the control limit factor, for each of these two n's; the lower of 

these two minima is then selected as the final local minimum. The 

study of this model reveals the existence of readily acceptable 

(local minimum) solutions that are relatively stable with respect to 

model changes, including marked changes in the distribution of assign­

able causes; in some cases, there are also found economically better 

solutions that would not be as readily acceptable as those offered by 

the local minima (e.g., the control limits might fall at ±6cj). 

Duncan argues that as extensions of the model approach reality, only 

local-minimum solutions will remain and shows that these solutions can 

be well approximated by solutions of single-cause models and, 

consequently, in practice it may be sufficient to use single-cause 

models. W. K. Chiu (1973) pointed out that some numerical results in 

Duncan's paper are in error; the inaccuracies are due to two sources: 

an error in Duncan's computer program for the calculation of the 

r(j)'s and the use of single precision arithmetic. Even though the 

qualitative conclusions of Duncan's paper (1971) are based on numerical 

study, they appear to remain valid when these inaccuracies are removed. 
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The assumption that once the process shifts into an out-of-

control state no further quality deterioration is possible is often 

unrealistic. In the same paper, Duncan (1971) also presents a "double 

occurrence" model. In this formulation it is assumed that following an 

initial shift a second occurrence of an assignable cause is possible; 

to simplify the analysis it is assumed that the joint effect of the two 

assignable causes produces always a shift of ûo in the process mean 

regardless of what two assignable causes occur jointly. This 

modification in the process model has little effect on the minimum cost 

solution, although it does produce some changes in the behavior of the 

cost surface. 

H. A. Knappenberger and A. H. E. Grandage (1969) also proposed a 

model for the economic design of a control chart when there is a 

multitude of assignable causes. They assume that the process mean, n, 

is a continuous random variable that can be approximated by a discrete 

random variable; one value of the discrete random variable, M(O), is 

associated with the in control state of the process and the remaining 

values, M(1), M(2), ..., M(S), are associated with out-of-control 

values of the process mean. They also assume that the time that the 

process remains in control is exponentially distributed. Knappenberger 

and Grandage minimize the expected cost per unit produced rather that 

the expected cost per time as Duncan did later in 1971. Another major 

difference in their modeling approach in comparison to Duncan's is that 

there is no constraint on the number of assignable causes that can 
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occur; that is, the process can shift from one out-of-control state to 

another, as long as the shift results in further deterioration. Their 

model is based on the following additional assumptions: 

a. The production process is stopped while action signals are 

investigated. 

b. The cost of investigating both real and false alarms is the 

same. 

c. The delay period (the time of taking a sample, inspecting it, 

and charting the result) is equal to zero. Consequently, the 

model neglects the expected cost of nonconforming items 

produced during the delay period. 

d. When the process goes out of control it stays out of control 

until the assignable cause is detected. 

e. When the process goes out of control it will not improve. 

This means that the process mean can only shift to worse 

values. 

f. Only one shift is allowed during a sampling interval. 

The expected total cost per unit produced is calculated as the sum 

of three components: 

a. The expected cost of investigating and correcting (if 

necessary) the process when the control procedure indicates 

that the process is out of control. 

b. The expected cost associated with the production of 

nonconforming items. 

c. The expected cost of sampling and testing. 
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The combination of these three cost gives an expected total cost: 

CI + C2 n C3 s s 
E ( C) + I q(i)a(i) + C 4  Y f(i)%(i) 

m m i=l i=l 
where, 

CI + C2 n = Cost of taking a sample of size n. 

C3 = Expected cost of investigating and correcting a process that is 

apparently out of control. 

C4 = Cost associated with producing a nonconforming unit c. product, 

m = Expected number of units produced between samples. 

q(i) = Conditional probability of an out-of-control signal when the 

process given that u = #(i), i=l,2,...,s. 

ad) = Probability that u = fi(i) at the time the test is 

performed. 

f(i) = Conditional probability of producing a nonconforming item 

given M = u(i), i=l,2, ..., s. 

7r(i) = Probability that the process is in state i, i=l,2,...,s. 

Knappenberger and Grandage do not derive an optimal solution 

analytically. Instead, a two stage procedure is developed for choosing 

the optimal parameters of the chart. In the first stage, the expected 

cost function is computed for a wide variety of the parameters of the 

X-bar chart, for cost coefficients, and for the desired values of the a 

priori distribution parameters. From these results, preliminary 

estimates of the optimal values of the X-bar chart parameters are 

obtained. In the second stage, these preliminary estimates are used as 

the starting point for a search method designed to locate the optimal 
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values of the control chart parameters within any desired accuracy. The 

solutions to 81 numerical examples are presented and a limited 

sensitivity analysis is conducted. By appropriate definition of the 

cost of investigating action signals, this model produces results 

consistent with Duncan's multiple-cause model. 

Duncan's multiple-cause model seems to have a more realistic cost 

structure than the Knappenberger-Grandage model, in that the different 

costs associated with searching for different assignable causes are 

explicitly treated in the model. However, the Knappenberger-Grandage 

model allows continued deterioration of quality beyond the initial 

shift, which may be a more realistic representation of the actual 

behavior of production processes than the single or double-shift 

multiple-cause Duncan model. Furthermore, the Knappenberger and 

Grandage model has fewer parameters to estimate than Duncan's and, 

consequently, is more appealing to practitioners. 

T. J. Lorenzen and L. C. Vance (1986), in an attempt to unify the 

methodology of control chart design, presented a general method for 

determining the economic design of a control chart regardless of the 

statistic used. Their model assumes that when the process goes out of 

control, it shifts to a known state and cannot return to an in-control 

state without intervention and that the in-control time is distributed 

as an exponential random variable with mean l/>. In order to develop 

a model for and to minimize the expected cost per unit time, they 

define a quality cycle as the time between the start of successive in-
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control periods; this entire cycle is represented in Figure 1. Then, 

the expected cost per unit time can be computed as the ratio of 

expected cost per cycle to the expected cycle time. 

Last First 
Sample Sample Lack 
Before Assignable After of 

Cycle Assignable Cause Assignable Control Assignable Cause 
Starts Cause Occurs Cause Detected Detected Removed 

o—.... —o 0 o .. . 0--

! < In control >j< Out of control 

Figure 1. Diagram of in-control and out-of-control states of a 
process 

The authors show that the relevant cost function is: 

C O / X  +  C L [ - T  + nE + h( A R L 2 )  + 51 T L  +  5 2  T 2 ]  +  S Y / A R L I  +  W 
C = 

1/X + (1-51)S T 0 / A R L1 - r + nE + h( A R L 2 )  + Tl + T 2  

(a+bn) [ 1/X - r + nE + h(ARL2) + 51 Tl + 52 T2 ] 
+ 

h { 1/X + (1-51)S T0/A R L1 - r + nE + h( A R L 2 )  + Tl + T2 } 
where 

n = Sample size. 

h = Time between samples. 

r = [l-(1+Xh)exp(-Xh)]/[X(l-exp(-Xh))] = Expected time of 

occurrence of an assignable cause, given that it occurs between 

two successive samples (0 < T < h). 

s = exp(-Xh)/[l-exp(-Xh)] = expected number of samples taken 

while the process is in control. 

ARLl = In-control average run length. 
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ARL2 = Average run length while the process is out of control 

because of a slip of size ^a in the control parameter. 

E = Expected time to sample and chart one item. 

TO = Expected search time when a false signal is given. 

T1 = Expected time to discover an assignable cause. 

T2 = Expected time to repair the process. 

51 = 1 if production continues during searches, 

= 0 if production stops during searches. 

52 = 1 if production continues during repair, 

= 0 if production stops during repair. 

CO = Quality cost per unit time while producing in control. 

Cl = Quality cost per unit time while producing out of control 

(CI > CO). 

Y = Cost of investigating a false alarm. 

W = Cost of investigating, locating, and repairing an assignable 

cause. 

a = Cost per sample of sampling, testing, and plotting that is 

independent of the sample size. 

b = Variable cost per item of sampling, testing, and plotting. 

Lorenzen and Vance show that if the sample size and the control 

limits are given (and, consequently, ARLl and ARL2 are fixed known 

quantities), the optimum sample interval, h, can be found by solving a 

quadratic equation in h and using the positive root as an initial point 

for Newton's method to solve the first order condition for a minimum of 
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the expected cost. They suggest a minimization technique for the case 

in which n, A, and h are unknown (the control chart is assumed to have 

control limits of the form ±Aa); the algorithm is fast in that it 

minimizes the cost function in a few seconds on current personal 

computers. The authors also perform a sensitivity analysis to quantify 

the effect of changing the sampling frequency to a more natural 

interval and to quantify uncertainties in process specifications; they 

find that the minimal cost can be sensitive to uncertainties in process 

specifications, but the sampling plan will be nearly optimal from a 

cost standpoint. 

C. Control Charts with Warning Lines 

In most economic studies of control charts, only those with action 

limits are considered despite the fact that, in practice, X-bar 

charts are seldom used without warning limits or other modifications 

because it is generally thought that charts with warning limits are 

more efficient than charts with only action limits. 

One modification which has been widely used is a run test on sam­

ple means; a run test calls for corrective action when a certain number 

of points out of a predetermined number of observations fall outside a 

specified warning line. More precisely, warning lines are drawn in 

less extreme positions than action lines; the occurrence of a number of 

points between the warning and the action lines should be considered as 

sufficient evidence for taking corrective action. Different rules have 
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been suggested for such schemes. The work of G. H. Weiler (1953) 

showed that the sequential use of runs in X-bar charts leads to 

significant reduction in inspection costs, and that in many cases it 

will be advantageous to introduce it instead of the conventional 

control chart with only action lines. The conventional chart is to be 

preferred only when it is possible to take large samples and sequential 

procedures are not desirable. 

P. G. Moore (1958) followed Weiler's suggestion of stopping 

production when a specified number, r, of means in succession fall over 

the control limit set up for the scheme and computed the average run 

length for some particular schemes; see Table 1. 

Table 1. Average run length for schemes suggested by Moore 
(with a single control limit at n+ka) 

In-control average run length 
ARLo = 1000 ARLo = 200 

k = 3.090 1.850 1.261 0.888 1 2.576 1.452 0.906 0.556 
r = 1 2 3 4 1 1 2 3 4 

He also computed, for three different shifts in the process mean, the 

probabilities that after a specified number of samples, m, have been 

drawn there will have been at least one stoppage due to r successive 

means falling beyond the control limits prescribed and showed that 

although there is always some gain in using a higher value of r, for a 

fixed in-control average run length, the actual gain obtained when 

increasing r by one decreases as r gets larger; his results suggest 

that there is practically no gain in probability for values of r 
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greater than 3 and that there is a significant advantage of using r = 2 

over using r = 1. Moore recommends the use of this kind of schemes for 

situations in which the value of the population mean of items being 

manufactured may change slightly due to tool wear, or a fresh batch of 

raw material, or a slight variation in the voltage of the power supply 

and so forth. 

One of the earliest works in the calculation of A.R.L. for 

inspection schemes using control charts with warning limits is due to 

E. S. Page (1955). In his paper Page considers some schemes based on 

the observations from the last few samples, provides tables for their 

average run lengths, and suggests a method for controlling both the 

mean and the standard deviation of a population on a single chart. The 

control rules that he considers in detail for controlling the mean of a 

normal population and their A.R.L.s are: 

Rl: Take corrective action if (i) two points out of any sequence of 

n fall between the warning lines or (ii) any point falls 

outside the action lines. 
n-1 

1 - Po + PI - PI Po 
ARLl = 

n-1 
(I - Po)(l - Po - PI Po ) 

where Po, PI, and P2 are the probabilities that a given point 

falls between the warning lines, between the warning lines and 

the action lines, and outside the action lines respectively. 

R2: Take corrective action if (i) n consecutive points fall 

between the warning and the action lines or (ii) any point 

falls outside the action lines. 
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n n 
ARL2 = (1 - PI )/(l - Po - PI + Po PI ) 

R3: Plot the means on a chart on which are drawn two warning and 

two action lines. Take corrective action if (i) any point 

falls outside the action lines, or (ii) n consecutive points 

fall outside the warning lines, or (iii) two out of any set of 

n consecutive points fall outside opposite warning lines. 

n n n n 
(1 - RS - R - S + SR + RS ) 

A R L 3  =  

n n n n 
P2 + RS(l+Po) + Po(R + S - SR -RS ) 

where R ( s )  is the probability that a sample point falls 

between the upper (lower) warning and action lines. 

J, I. Weindling, S. B. Littauer, and J. Tiago de Oliveira (1970) 

proposed a control chart with warning limits in order to increase the 

sensibility to small shifts in process mean. The authors established a 

pair of warning limits, located inside the action limits, and assumed 

that the occurrence of any of the following events would constitute an 

action signal: (i) a single sample mean fails outside the action 

limits, (ii) r consecutive sample averages fall between the upper 

action and warning limits, or (iii) r consecutive sample averages fall 

between the lower warning and action limits. Using Markov theory, they 

derive the expression for the A.R.L., 

1 
ARL 

r r r r 
Po + PI (1-P1)/(1-P1 ) + P2 (1-P2)/(1-P2 ) 
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where, 

Po = Probability of a sample average falling outside action limits. 

PI = Probability of a sample average falling between the upper 

action and warning limits. 

P2 = Probability of a sample average falling between the lower 

action and warning limits. 

They discuss the effects of action and warning limits on the average 

run length. Their modified chart detects small shifts by means of the 

occurrence of critical run accumulations in the warning regions and 

large shifts by means of single samples outside the action limits. 

They also compare the modified control chart with the traditional chart 

(only with action lines) and find their chart to be more sensitive for 

small and moderate-sized shifts in the process mean. 

G. R. Gordon and J. I. Weindling (1975) have considered the econo­

mic design of warning limit control chart schemes; they consider a 

production process monitored by a general control chart that calls for 

action if any of the following three events occur: 

1. The last sample mean lies outside the action limits. 

2. The last r samples fall between the upper action and warning 

limits. 

3. The last r samples fall between the lower action and warning 

limits. 

A single assignable cause is assumed to randomly occur which shifts the 

distribution of the attribute values of parts produced to known values; 

it is assumed that the probability of the shift occurring during an 
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interval of time t is equal to l-exp(-Xt), where X is a known positive 

parameter. Since it is also assumed that parts are produced with a 

constant rate, R, a linear relationship exists between the number of 

parts, V, and the time required to produce them, t, by letting = 

X/R be the mean number of assignable causes during the time required 

by the production process to produce one part, the probability of the 

occurrence of an assignable cause during the production of v parts is 

equal to l-exp(-#y). The authors consider three types of costs in 

their model: the cost of sampling (which includes the cost of selecting 

the parts to be sampled, the cost of making the measurements, the cost 

of interpretation, and the cost of maintaining the control chart), cost 

of searching for an assignable cause and cost of process adjustment if 

found, and cost of defectives (which includes costs of reworking and/or 

scrapping of the final product, costs of returns, costs of failures in 

service, replacement, and loss of good will). 

In order to obtain an expression for the average cost per good 

part produced, Gordon and Weindling consider the process as being 

composed of two distinct types of cycles. The type 1 cycle is defined 

as the occurrence of a spurious action signal before the occurrence of 

an assignable cause; cycle type 2 is defined as the arrival of an 

assignable cause before a spurious action signal occurs and then, after 

some additional samples, the occurrence of an action signal. The 

average cost per good part produced. A, can then be expressed as: 

PI E(C|1) + P2 E(C|2) 

PI E(G|1) + P2 E(G|2) 
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where, 

Pi = Probability of cycle i occurring; i = 1,2. 

E( c l i )  = Expected cost per type i cycle occurs; i =l,2. 

E(G|i) = Expected number of good parts produced during given that 

a type i cycle occurs; i = 1,2. 

The authors present general expressions for the variables E ( C | 1 ) ,  

E(C|2), E(G|1), and E(G|2) in terms of the average number of samples 

until an action signal is obtained given that a shift does not occur 

first, the average number of samples taken before a shift occurs, the 

mean number of samples after a shift occurs until an action signal 

occurs, the fraction of the sampling interval before the occurrence of 

a shift, the fraction defective while the process is in control, the 

fraction of defective parts produced by the process when it is out of 

control, and the sample size. They use Markov modeling to determine 

the probabilities PI and P2 and the expected values that comprise the 

average cost expression. They also present a numerical example which 

indicates the variation in the average cost expression for various 

control plans and they discuss some optimization considerations for the 

average cost expression. 

W. K. Chiu and K. C. Cheung (1977) investigated the economic 

design of X-bar charts with both warning and action limits, based on a 

process model similar to the Gordon-Weindling model. They use a three-

dimensional pattern search to optimize the cost function and they make 

comparisons among the minimum cost designs of X-bar charts with and 
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without warning limits and of Cusum charts and they find no appreciable 

differences. Thus, for practical application, they recommend the use 

of X-bar charts with warning limits as they are much easier to handle 

than Cusum charts, and they provide more psychological protection than 

X-bar charts with action limits only. They also suggest a simplified 

economic scheme for the design of control parameter values and propose 

that in practice the band enclosed by the warning limits should be 0.85 

times as wide as the band enclosed by the action limits rather than 2/3 

as has been commonly practiced. 

D. J. Wheeler (1983) provides tables of the power function of an 

X-bar chart for the set of detection rules that appear in the 

Statistical Quality Control Handbook published by Western Electric. 

His first table contains the probabilities of obtaining an action 

signal when the process is under control (C. W. Champ (1986) points out 

that these probabilities are incorrect). His second table covers 

eleven sizes of shifts in the process average, and gives the 

probabilities that the X- bar chart will indicate a lack of control in 

the direction of the shift within a given number of samples. He also 

presents tables for the proportion of product outside the 

specifications in terms of the shifts in the process mean. The method 

used to construct these tables is a systematic enumeration of all 

possible configurations of the control chart. 

C. W. Champ (1986) considers the detection rules recommended by 

the Western Electric's Statistical Quality Control Handbook. He out­

lines a general methodology for computing the distribution of the run 
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length and the average run length based on Markov theory and provides a 

method for obtaining the minimum number of states for the Markov chain 

representation of the chart. He also computes the average run length 

of an X-bar chart as a function of the process mean for fourteen 

different detection rules. Even though most of his numerical results 

are for X-bar charts, his methodology is not limited to this chart; 

his method can be applied to other control charts such as the R chart, 

np chart and c chart. He also finds that X-bar charts with supplemen­

tary runs rules were more sensitive to small to moderate changes in 

the mean that the corresponding X-bar chart, but not as sensitive as 

the corresponding Cusum chart for small, medium, and moderately large 

shifts in the process mean. In addition. Champ studies and presents 

some numerical results for multidimensional Shewhart control charts 

with supplementary runs rules. 

0. Simplified Designs for  Control Charts 

Economic models are relatively complex and may not be useful for 

practical applications because in practice the values of most costs 

and risk parameters are rarely available and in many occasions cannot 

be estimated precisely. Thus, for basic charts such as the X-bar, 

the u chart and the p chart, several rules of thumb for the selection 

of the sample size, n, the sampling period (hours between samples), 

h, and the control limits, k (the number of standard deviations above 

or below the center line), have been developed and applied. 
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Although the X-bar chart has probably been the most studied 

control chart, some significant attention has been devoted also to the 

design of the p chart, used to control a Bernoulli process, and to the 

u chart, used to control the number of defects per unit. As in the X-

bar chart, the design of these charts requires the specification of the 

three parameters n, h and k. Table 2 summarizes the most widely used 

simplified designs. 

Table 2. Simple designs for control charts 

1 1 1 Sample Sampling IControl1 
! Chart 1 Proposed by: Year 1 size period iLimits 1 

1 X-bar 1 Ishikawa 1976 1 5 1 1 3a 1 
1 X-bar 1 Juran et al. 1974 1 4 Not given 1 3a 1 
1 X-bar 1 Feigenbaum 1961 1 5 1 1 3a i 
1 X-bar j Burr 1953 1 4 or 5 Not given 1 3a 1 

1 P 1 Grant & Leavenworth 1980 |lOO% inspec. 8 1 3a 1 
1 P 1 Ishikawa 1976 |>50, 3<np<4 8 1 3a 1 
1 P 1 Juran et al. 1974 1 >50,np>4 Not given 1 3a i 

P Juran et al. 1971 1 9(l-p)/p Not given 1 3a 1 
1 P 1 Feigenbaum 1961 1 25 1 or 8 1 3a 1 
1 P 1 Cowden 1957 1 np>25 Not given 1 3a 1 
1 P 1 Burr 1953 1 np> 1 Not given 1 3a 1 

1 u 1 Ishikawa 1976 1 2 or 3 8 1 3a i 
1 u 1 Juran et al. 1974 1 Not given 1 3a 1 
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III. PROBLEM STATEMENT, RESEARCH OBJECTIVES AND METHODOLOGY 

A. Problem Statement 

Current control schemes fall basically into two categories: 

either they are complicated and complex, requiring the simultaneous 

application of multiple stopping rules, or they are simplified designs 

relatively insensitive to moderate shifts in the process mean. Complex 

schemes are cumbersome to apply in practice because the person in 

charge of taking the samples and plotting them is asked to check for 

the violation of a multitude of stopping rules, some of these requiring 

keeping track of up to ten sample points in a control chart with up 

to seven warning lines; this process is time consuming and prone to 

errors. On the other hand, simplified control schemes, even though 

they can be easily implemented, usually are far from optimal from an 

economical view point. The need for simple control schemes with in-

control average run lengths comparable to those of more complex control 

schemes and short out-of-control average run lengths is evident. 

In this research, we are not concerned with comparing the effects 

of different ways of collecting the data, for example whether it is 

preferable to take small samples frequently or larger samples more 

rarely. Although comparisons like these are important in practice (when 

they can be made), the quality control engineer has gotten used to small 

samples (n=5) for controlling or estimating the quality of the output 

of a production process. There are several valid reasons for this 
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choice; for example, in the case in which the parameter being 

controlled is the mean, a small sample will easily detect a very-

serious shift; in addition, in most cases, the fraction of production 

that may be inspected is determined by a limitation on the man-hours 

available. Consequently, our concern is to assess control schemes for 

obtaining a signal for action when the observations are obtained in the 

same way. 

Another reason why we are not considering the effects of the sampl­

ing interval and sample size in a given control scheme is because the 

economic models for control charts have provided a good qualitative 

insight on the values of these parameters. For example, in an X-bar 

chart, the sample size is mainly determined by the size of the shift, 

S, in the process mean to be detected; for small shifts, 5 < 0.50(7, 

the sample size can be as large as 35 or more; moderate shifts, a < 6 

< 2a, usually require sample size between 10 and 25 and relatively 

large shifts, 5 > 2a, often result in a small sample size (between 3 

and 10). The sampling interval is largely determined by the hourly 

penalty cost for producing items when the process is in the out-of-

control state; larger values of this cost imply more frequent sampling 

while smaller values of this cost imply less frequent sampling. It is 

also reassuring to know that numerical studies have indicated that the 

optimal control chart design is relatively insensitive to 

misspecification of the cost parameters but relatively sensitive to 

the magnitude of the shift in the process mean. 
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For a control chart with action limit only and the sample size 

fixed, only the location of the action lines can be changed. These 

type of changes affect the level of the under control A.R.L. but they 

do not change the basic shape of the A.R.L. curve; as a result, this 

type of control charts is relatively insensitive to small changes in 

the process mean, unless the sample size is made large, or the control 

limit is decreased to a point where an excessive number of false signal 

will result. For control charts with warning and action lines the 

situation is different since there is an infinite number of action and 

warning limit combinations that will result in the same under control 

average run length. Thus, fixing the in-control A.R.L. defines a 

family of A.R.L. curves and it is possible to select, within this 

family, the curve that minimizes the A.R.L. at a given out-of-control 

state as measured by a shift in the process mean. The objective of 

this research is to identify these curves. 

In this research we assume that the in-control state of the process 

being monitored can be described by a random variable with a known 

distribution. The control scheme used to control the process consists 

of a set of rules of the form: declare the process to be out-of-control 

if k out of m consecutive points fall in the interval (a,b) (a < b), or 

k out of m consecutive points fall in the interval (-b,-a). We are 

specially interested in investigating the average run length properties 

of these type of schemes for relatively small values of m, say m < 5. 

To be more specific, consider a continuous random variable X that 

measures the quality of a production process; we observe successively 
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the independent samples averages X(l), X(2), and assume that the 

X(i)'s are independent and normally distributed with mean n and with 

known and fixed standard deviation a/ /n, where n is the sample size. 

For convenience and without loss of generality, we assume that the 

control scheme is based on the standardized sample means, 

Z( i )  =  [ x ( i )  - Mo]/[a/i/ n], i  = 1,2,..., 

where M O  is the desired in-control value for expected value of the 

random variable X. 

Denote by R[k,m,a,b] a control rule that calls for action if k out 

of m consecutive standardized sample averages fall in the interval 

(-b, -a), or k out of m consecutive standardized sample averages fall 

in the interval (a,b). Then, a control scheme, S, that calls for an 

action if any of the rules Rj, j=l, 2, ... r, can be described as 

S = { Rj[ k(j), m(j), a(j), b(j) ] I j = 1,2,...,r}. Using this 

notation the control scheme recommended by the Western Electric Compa­

ny's Statistical Quality Control Handbook (1956) can be described as 

{ Rl[l,l,3,®], R2[2,3,2,=], R3[4,5,1,=], R4[8,8,0,®] }, 

and the control scheme recommended by Grant and Leavenworth (1988) can 

be described as 

{ Rl[7,7,0,=], R2[10,ll,0,"], R3[12,14,0,=], R4[14,17,0,®], 

R5[16,20,0,»] } 

We are interested in control schemes that produce a large number of 

samples before receiving an action signal when the process is in state 

of control (i.e., a large in-control average run length) and that also 

produce a small number of samples before receiving an action signal 
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when the process mean has shift from the target value w = juo to the 

out-of-controi value, say w = 5, Since the average run length as a 

function of the magnitude of the process mean is a strictly decreasing 

function, the A.R.L. curve has a shape similar to that of the operating 

characteristic of a two-laiied test. Then, we will say that, given two 

control schemes, say SI and S2, SI is more powerful than S2 if the in-

control average run Length of SI is greater than or equal to the in-

controi average run length of S2 and the out-of-control average run 

length of SI is less than the out-of-controi average run length of S2, 

Figure 2 illustrates this situation. 
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Figure 2. Power comparison of two control schemes 

For a given control scheme, S, if we consider only the k(j)'s and 

the m(j)'s to be known and fixed, the average run length (the expected 

number of samples taken before receiving an action signal) depends upon 
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the process mean, u, and the control limits a(j), b(j), j = 1,2,...,r. 

In addition, notice that, by letting the control limits vary, we have 

defined a family of control schemes in which each member is identified 

by a parcicular set of values for the control limits. For instance, 

the control scheme suggested by Wetherill (see Section I.E.4) 

{ Rl[l,l,3,®], R2[2,2,2,®] } is a member of the family { { Rl[l,l,x,®], 

R2[2,2,y,®] } I X > y }. 

The average run length is a function of the control limits, a(j), 

b(j), j=l,2,3,...,r and the process mean, n, that is, ARL = 

ARL(a,b,#), where a = [a(l), a(2), ..., a(r)] and b = [b(l), b(2), ... 

b(r)]. Then, given a family of control schemes, F, with a fixed in-

control average run length, ARLo, we want to identify its most powerful 

members. This problem can be described in mathematical terms as 

follows : 

Given ARLo, r, 5, and the integer positive numbers m(l), m(2), 

m(r), k(l), k(2), ..., k(r) that define the family of control 

schemes 

F= { S I  S = { Rl[k(l),ra(l),a(l),b(l)], R2[k(2),m(2),a(2),b(2)], ... 

... Rr[k(r),m(r),a(r),b(r)] } } 

find optimal control limits, say, a- = [a'Kl), a*(2), ..., a*(r)], 

and b* = [b*(l), b*(2), ..., b*(r)] such that, for all a and b such 

that ARL(a,b,0) = ARLo, 

ARL(aA, b*, u) < ARL(a, b, M) for all -6 < M  < S 

and ARL (a'-, b'-, 0) = ARLo, 
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B. A General Methodology for Determining the Average Run Length 

A control scheme of the type previously discussed can be represented 

by a finite Markov chain with a single absorbing state. The absorbing 

state represents an action signal given by the control chart and the 

transient states indicate the status of the chart with respect to each 

control rule. The run length is then the number of transition steps in 

which the Markov chain is in a transient state; consequently, the 

average run length can be computed as the mean time to absorption. 

When solving a problem concerning the motion of an absorbing Markov 

chain within the set of its transient states there is no loss of 

generality if all its recurrent states are assumed to be absorbing; 

consequently, in such problems, the transition matrix of the Markov 

chain can be assumed to have the form 

I I 0 I 
P  = I  -  I  

I  R  Q  I  

where I is an identity matrix whose order is equal to the number of 

absorbing states in the Markov chain, Q is a square matrix whose order 

is equal to the number of transient states, 0 is a null matrix, and R 

is a matrix containing the transition probabilities from each transient 

state to each absorbing state. 

The inverse of the matrix (I-Q), A, (where I is an identity matrix 

whose order is equal to the number of transient states), is called the 

fundamental matrix of the absorbing Markov chain. The moments of the 

random variable T, the time to absorption (the number of transition 
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steps in which the Markov chain is in a transient state), can be 

expressed in terms of the fundamental matrix, A; in particular, 

E(T) = A e 

2 
E (  T  )  =  ( 2 A  -  I )  A e, and 
3 

E( T ) = [ 6A (A  - I) + I ] A  e 

where e is a column vector with all its components equal to 1 

(M. losifescu, 1980). The ith component of the vector E(T) gives the 

expected absorption time given that the process starts in the ith 

transient state. 

To be more specific and to illustrate how a control scheme can be 

represented by a Markov chain, consider the following example. Imagine 

a situation in which an increase in the mean of a given process is to 

be detected. Furthermore, assume that the following rule is being used 

to control such a process: 

A positive shift in the process mean has occurred if two out three 

successive sample means fall above the +2a limit. 

Figure 3 illustrates this control scheme. To define the non-

absorbing states of the Markov chain representation of the control 

chart, one must examine what information the control rule requires one 

to remember each time that a sample is taken. The rule "stop if two 

out three successive sample means fall above the +2a limit" requires 

one only to keep track of the last two sample points and their location 

in the control chart relative to the control limit. If we let "A" 

represent a point falling in the zone above the 2a limit and "B" 

represent a point falling below the 2a limit, at any time, we can 
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imagine the chart as being in one out of three possible transient 

states: 

BB = The last two sample points are below the 2a limit. 

AB = The last sample point is below the 2a limit and the previous 

sample point is above the 2a limit. 

BA = The last sample point is above the 2o limit and the previous 

sample point is below the 2o limit. 
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Figure 3. A control chart to detect a positive shift in the process 
mean 

The absorbing state of the Markov chain represents an action 

signal, that is, the event "two out three successive sample means fall 

above the +2a limit" ( B A A ,  A B A ) .  

Let p = Prob{Standardized sample mean < 2 } = $(2-%), and 

q = ProbCstandardized sample mean > 2 } = 1-p = 1-<Î>(2-M), 



www.manaraa.com

52 

where $(x) is the standard normal cdf, and ti is the process mean. 

Then, the Markov chain representation of the control scheme is 

+-< p < + 

I  I  

I  I  
H > [ B B] q > [B A] p >  [ A B ]  

+——p——+ q 

I  
+ — >  [ S T O P ]  < —  

and the corresponding transition probability matrix is: 

( 0 )  ( 1 )  ( 2 )  ( 3 )  

where Q = 

State STOP BB BA AB 

(0) STOP 1  1 0 0 0 ~| 

1  1  i  I 0 i  
(1) BB 1 0 P q  

II cu II o
 

1  1  1 R Q 1 
( 2 )  BA 1  

I  
q  0 0 p  1  

1 
i  —  _  1  

(3) AB 1. -  q  P 0 0 _l 

p  q  o ~ l  l ~ o ~ |  

=  1  0 0 p  1 .  I  =  

1  
[ 1 ], 0 = o

 

o
 

o
 

and R = 1  q  1  

1 o
 

o _ l  L q _ l  

The expected times to absorption, E ( T), can be computed as 
"1 

E(T) = (I - Q) e , where e = [l, 1, 1]'. 

The vector E ( T) contains the expected number of transitions 

starting from a given transient state until absorption. If we assume 

that we start in state BB, the average run length is equal to the first 

component of the vector E(T), or 
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2 2 
A R L ( M )  = [ 2 - p  ] / [ l - p - q p ]  

2 2 
= [ 2 - p ] / { (1-p) (l+p) } 

2 2 
= [ 2 - $(2-^) ] / { [l-$(2-#)] [l+$(2-#)] } 

This Markov chain representation of a control scheme can be easily 

extended to control charts in which several control rules are used. 

The transition probabilities, and, thus, the average run length, depend 

on the control and warning limits and the process mean. Numerical 

methods can be used to compute the fundamental matrix of the Markov 

chain and to find the values of the control and warning limits that 

give the most powerful control scheme. 

The most powerful control schemes to be found in this research are 

the most powerful in the sense that if the production process goes out 

of control because of a shift in the process mean, these schemes will 

detect such a shift, in average, in the minimum number of samples. In 

practice, however, a change in the process mean might be accompanied 

also by a change in the distribution of the random variable being 

monitored or trends also might appear. 

Monte Carlo simulation will be used to evaluate the behavior of the 

most powerful control schemes under a variety of out-of-control 

situations (other than a shift in the process mean) and they will be 

compared to the behavior of a control scheme widely used in practice. 

C. Robustness of the Most Powerful Control Schemes 
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The following out-of-controi situations will be studied: 

1. The random variable monitored is distributed according to a double 
2 

exponential distribution with mean n and variance X /2, that is, 

f(x) = (X/2) exp[ -X|x-f£| ], -œ < X < +® 

2. The random variable monitored is distributed according to a Cauchy 

distribution with mean u and scale parameter a, 
2 

f(x) = l/iïïol 1 + {(x - u)/a} ]}, -® < X < +œ . 

3. The random variable monitored is the result of a mixed auto-

regressive-moving average process of first order, 

x[nJ = e[n] + j5 f[n-l] - a x[n-l], n = 1,2,3,... 

where a and ^ are constants and the e[i]'s, i = 1,2,3,... are 

independent and normally distributed with mean zero and standard 

deviation a. 
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III. DETERMINATION AND EVALUATION OF THE MOST POMERFUl CONTROL SCHEMES 

In this chapter, four different families of control schemes are 

studied and their most powerful members identified. The Markov chain 

representations of these control schemes are given and these represen­

tations are used to compute their average run length properties. 

A. The { Rl[l,l,x,m], R2[2,3,y,a] } Family of Control Schemes 

Ir. this section, the following family of control schemes is studied 

and optimized: those control schemes that declare the process out of 

control if 

a. a single sample mean falls x or more standard units away from 

the target mean, 

b. two of the last three sample means fall y or more standard 

units above the target mean, or 

c. two of the last three sample means fall y or more standard 

units below the target mean. 

Figure 4 illustrates this type of control scheme. 

To define the nonabsorbing states of the Markov chain 

representation of this control scheme, it is necessary to keep track 

only of the last two sample points and their location relative to the 

control limits. If we let "A" represent a point falling in the 

interval (+y, +x), "0" represent a point falling in the interval (-y, 

+y), and "B" represent a point falling in the interval (-x, -y), at any 
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Stop if one sample mean falls 
above this control limit: +x 

Standardized Sample Mean 

Stop if 2 out of 3 sample means 
fall above this control limit: +y 

0 

Stop if 2 out of 3 sample means 
fall below this control limit: -y 

Sample Number 

Stop if one sample mean falls 
below this control limit: - x 

Figure 4. The { Rl[l,l,x,<»], R2[2,3,y,®] } control scheme 

time, the control chart can be thought of as being in one out of the 

eight possible states: 

State No. 0: STOP: An out-of-control signal has been obtained. 

State No. 1: 00: The last two sample points are in the interval 

(-y,+y). 

State No. 2: OA: The last sample point is in the interval (+y, +x) and 

the previous sample point is in (-y, +y). 

State No. 3: AO: The last sample point is in the interval (-y, +y) and 

the previous sample point is in (+y, +x). 

State No. 4: AB: The last sample point is in the interval (-x, -y) and 

the previous sample point is in (+y, +x). 



www.manaraa.com

57 

State No. 5: BA: The last sample point is in the interval (+y, +x) and 

the previous sample point is in (-x, -y). 

State No. 6: BO; The last sample point is in the interval (-y, +y) and 

the previous sample point is in (-x, -y). 

State No. 7: OB: The last sample point is in the interval (-x, -y) and 

the previous sample point is in (-y, +y). 

Let 4>( ) be the standard normal c.d.f and u the process mean, then 

Po = Prob{Standardized sample mean falls in the interval (-y, +y)} 

= $(y-%) - ii-y-tx). 

Pa = Prob{Standardized sample mean falls in the interval (+y, +x)} 

= $(%-%) - and 

Pb = Prob{standardi2ed sample mean falls in the interval (-x, -y)} 

= <P(~y-n) - $(-x-%), 

and the transition probability matrix of the Markov chain representa­

tion of the control scheme is 

1 0 0 0 0 0 0 0 1 
1 

Po-Pa-Pb Po Pa 0 0 0 0 
1 

Pb 1 
1 

1-Po-Pb 0 0 Po Pb 0 0 
1 

0 1 
1 

1 I 1 0 
1 1 

1-Po-Pb Po 0 0 0 0 0 
1 

Pb 1 = 
1 

1 1 

1 1 

1-Po 0 0 0 0 0 Po 
1 

0 1 
1 

1 1 
1 R 1 Q 

1-Po 0 0 Po 0 0 0 
1 

0 1 
1 

1-Po-Pa Po Pa 0 0 0 0 
1 

0 1 
1 

1-Po-Pa 0 0 0 0 Pa Po 
1 

0 1 

The expected times to absorption, ET, can be computed as 
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-1 
1-Po -Pa 0 0 0 0 -Pb 1 1 

i 1 
1 1 ET(1) 
1 

0 1 -Po -Pb 0 0 
1 1 

0 1 1 
1 1 

1 1 ET(2) 

-Po Û 1 0 0 0 
1 1 

-Pb 1 1 
1 1 

1 1 ET(3) 

0 0 0 1 0 -Po 
1 1 

0 i i 
1 1 

1 = 1 ET(4) 

0 0 -Po 0 1 0 
I 1 

0 1 1 
1 1 

1 1 ET(5) 

-Po -Pa 0 0 0 1 0 i 1 
1 1 

1 1 ET(6) 
1 

0 0 0 0 -Pa -Po 
1 1 

1 1 1 1 1 ET(7) 

The ith component of the vector ET, ET(i), gives the expected number of 

transitions starting from state i ( i = 1,2,...,7 ) until absorption. 

If it is assumed that at time zero the process is in control, that is, 

in state 1 (oo), the average run length (for a given pair of control 

limits, X and y, and a fixed process mean, u) is equal to the first 

component of the vector ET, or ARL(x,y;w) = ET(1). 

The problem is to determine the values of the control limits, x and 

y, such that, for a given in-control average run length, the out-of-

control run length is minimized. For the purpose of this discussion, 

it will be assumed that the process is out of control if a shift of at 

least one standard deviation has occurred in the process mean. Thus, 

in mathematical terms the problem is: 

Given ARLo and the family of control schemes 

F = { S I S = { Rl[l,l,x,®], R2[2,3,y,»] }, x > y } 

find optimal control limits, say x* and y*, such that for all x and 

y such that ARL(x, y; 0) = ARLo, 

A R L ( X " ,  Y - S  1 )  <  A R L ( X ,  y; 1 )  

and ARL(x*, y*; 0) = ARLo. 
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This problem is equivalent to the equality-constrained minimization 

problem, 

(Pl) Minimize h(x,y) = ARL(x,y; 1) subject to 

ARL(x,y; 0) = ARLo, and 0 < y < x. 

One way to solve this problem is by using penalty methods. Instead 

of minimizing h(), a new objective function, g() is minimized. The 

function g() is constructed from the original objective function and 

the constraints in such way that g() includes a "penalty" term which 

increases the value of g() whenever a constraint is violated with 

larger violations resulting in larger increases. 

In particular, problem (Pl) can be solved by solving 

(P2) Minimize g(x,y) = ARL(x,y; 1) + k | ARL(x,y;0) - ARLo | 

where k is a positive constant. Because of the simplicity of the 

constraints 0 < y < x, they can be handled implicitly in the 

optimization process and they are not included in the function g(). In 

addition, notice that the constraint ARL(x,y; 0) = ARLo can be 

rewritten in the form x = f(ARLo, y) and problem (P2) is then 

equivalent to 

(P3) Minimize g(y) = ARL( f(ARLo,y),y;1) + k|ARL(f(ARLo,y),y;0)-ARLo| 

Problem (P3) is a nonlinear optimization problem in one variable and 

can be solved using standard optimization methods. 

1. Evaluation of the Modified Objective Function; g(v) 

The evaluation of the function 

g(y) = A R L( fCARLO,y),y;1) + k | ARL(f(ARLo,y),y; 0) - ARLo | 
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requires the evaluation of the functions ARL(x,y; M) and f(ARLo,y). 

At first glance, it seems that the evaluation of ARL(x,y; n) requires 

the inversion of the matrix A = (I-Q); however, a closer look to the 

problem reveals that in order to evaluate ARL(x,y; n), it is only 

necessary to find the value of ET[l] in the following system of linear 

equations : 

a[l,l] ET[1] + a[l,2] ET[2] + a[l,3] ET[3] + ... + a[l,7] ET[7] = 1 

a[2,l] ET[1] + a[2,2] ET[2] + a[2,3] ET[3] + ... + a[2,7] ET[7] = I 

a[3.1] ET[1] + a[3,2] ET[2] + a[3,3] ET[3] + ... + a[3,7] ET[7] = 1 

• •• ••• ••• ••• ••• ••• 

a[7,l] ET[1] + a[7, 2 ]  ET[ 2 J  + a[7,3] r[3] + ... + a[7,7] ET[7] = 1 

where a[i,j] represents the element in the ith row and the jth column 

of the matrix A = (l - Q) and ET[i] is the average run length given 

that the control chart started in state i, i = 1,2,..,7, j = 1,2,...,7. 

Notice that the values of the a[i,j]'s are known once x, y and a are 

fixed. By performing Gaussian row operations on this system of linear 

equations, it can be reduced to an equivalent lower triangular system: 

a' [1,1] ET[1] = b[l] 

a'[2,1] ET[1] + a'[2,2] ET[2] = b[2] 

a'[3,1] ET[1] + a'[3,2] ET[2] + a'[3,3] ET[3] ... = b[3] 

•  • • •  #  *  #  • • •  • • •  

a'[7,1] ET[1] + a'[7,2] ET[2] + a'[7,3] ET[3] +...+ a'[7,7]ET[7] = b[7] 

from which the value of ARL(x,y; n) can be easily computed as 

b[1]/a'[1,1]. In order to reduce the round-off error, partial pivoting 
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should be used during the triangularization process (Johnson and Dean 

Riess, 1982, pp. 27-32). 

Given a desired in-control average run length, ARLo, and a value 

for the inner control limit, y, finding the value of the outer control 

limit, X = f(ARLo,y), that results in the desired ARL, requires the 

solution of the nonlinear equation ARL(x,y;0) = ARLo. The use of 

methods that require derivatives, such as Newton's method, to solve 

this nonlinear equation is practically out of the question. 

Consequently, the value of x=f(ARLo,y), will obtained using the secant 

method (Johnson and Dean Riess, 1982, pp. 166-169). The secant method 

was chosen to solve ARL(x,y;0) = ARLo because its rate of convergence 

is stronger than linear, it is easy to program, and it does not require 

derivative evaluations. 

Algorithm GEVAL, given below, describes the steps necessary to 

evaluate the modified objective function g(y). 

Algorithm GEVAL 

This algorithm may be used to evaluate the modified objective 

function g(y). 

Given: A procedure to initialize the matrix A = (l-Q). 

A procedure to triangularize a matrix. 

y = Inner control limit. 

ARLo = Desired in-control ARL. 

M = Out-of-control process mean. 

Nmax = Maximum number of iterations for the secant method. 

Toi = Tolerance to be used in the secant method. 
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k = Penalty weight. 

1. Compute two initial estimates for the value of x = f(ARLo, y). 

(Two fairly good initial estimates are xl = y + j3-y|/4 and x2 = 

3.0). 

2. Use these estimates of x as starting points for the secant method 

to solve the equation ARL(x,y;0) = ARLo. 

3. Initialize matrix A = (I-Q) using the given inner control limit, y, 

the computed outer control limit, x, and the out-of-control process 

mean, u. 

4. Triangularize the matrix A and compute ARL(x,y;^). 

5. If I ARL(x,y;0) - ARLo | < Toi then let g(y) = ARL(x,y;#); 

otherwise let g(y) = ARL(x,y;w) + k | ARL(x,y;0) - ARLo |. 

2. Minimization of the Modified Objective Function; g(v) 

The minimization of the modified objective function, g(), is 

carried out using an algorithm that does not require the evaluation of 

the derivative of that function. Although, in general, algorithms 

using the derivative are somehow more powerful than those using only 

the function, the fact that in this case it is not possible to obtain 

an explicit formula for the derivative of g(y) makes the application of 

such methods undesirable; the application of such methods to this 

problem would require the numerical evaluation of the derivative of gO 

which is a particularly unstable process and quite difficult to analyze 

carefully. The method used to find the global minimum of the function 
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g() is based on inverse parabolic interpolation (Press et al., 

1986). The basic idea behind this method is, first, to find an 

interval (y[l], y[3]) on which the objective function is convex and 

preferably containing the global minimum y-. Then, select another 

point, y[2], in that interval, find a second degree polynomial 

interpolating g() at yCl], y[2], and y[3], find the minimum of this 

interpolating polynomial, and use this minimum as an approximation to 

the minimum of g(). This procedure is repeated until some criteria for 

the accuracy of y» is satisfied. The formula for the abscissa, y, 

which is the minimum of a parabola through three points (y[i], g[i]), 

i = 1, 2, 3 is 

2 2 
1 (y[2]-y[l]) (g[2]-g[3]) - (y[2]-y[3]) (g[2]-g[l]) 

y = y[2] - — 
2 (y[2]-y[l]) (g[2]-g[3]) - (y[2]-y[3]) (g[2]-g[l]) 

Algorithm GMIN integrates the basic ideas presented previously and 

provides more details on the procedure used to minimize the modified 

objective function. 

Algorithm GMIN 

Given: A procedure to evaluate the function g(y). 

ARLo = Desired in-control average run length. 

Nmax = Maximum number of iterations. 

Yerror = Maximum error allowed in the optimal value for the 

inner control limit. 

1. Find an interval, I, containing y*, where g(y*) = rain {g(y)}. 

2. Select three values of y in I: y[l] < y[2] < y[3]. 
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3. Evaluate g at each of these points and let g[i] = g(y[i]), i=l,2,3. 

4. Compute d = | y[3] - y[l] | and set n = 1. 

5. While (n < Nmax and d > Terror) do: 

5.1. If g(y) is not convex in the interval (y[l], y[3]) then 

select another set of initial values for y[l], y[2], and y[3] 

and go to step 3. 

5.2. If g(y) is convex in the interval (y[l], y[3]) then 

5.2.1. Carry out a quadratic interpolation through the 

points (y[l], g[l]), (y[2], g[2]), and (y[3], g[3]) 

to estimate y-. Let y' be the estimate of y*. 

5.2.2. Evaluate g at y': g' = g( y' ). 

5.2.3. Let g[k] = max{ g[l], g[2], g[3] } 

5.2.4. Replace y[k] by y' and g[k] by g'. 

5.3. Increment n by one 

5.4. Compute d = max{ y[1],y[2J,y[3] } - min{ y[l],y[2],y[3] } 

End while. 

6. If d < Yerror then 

6.1. Let g[j] = Min{ g[l], g[2], g[3] } 

6.2. Let y- = y[j], compute x* = f(ARLo, y-) and stop. 

7. If n > Nmax then the maximum number of iterations has been 

exceeded; stop. 

In addition to the algorithms previously described, another 

algorithm is necessary to compute the cumulative standard normal 

probabilities. The normal probability approximation given by W. J. 
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Cody (1969) and presented and discussed by W. J. Kennedy and J. E. 

Gentle (1980) was used to compute the transition probabilities and 

initialize the matrix (I-Q). 

Figure 5 shows the graph of g() for in-control average run lengths 

equal to 200, 300, and 500, and k = 1, that is, 

g(y) = ARL( f(ARLo,y),y; 1 ) + | ARL( f(ARLo,y),y; 0 ) - ARLo I ,  

for ARLo = 200, 300, 500, and Figure 6 shows all the control-limit 

combinations resulting in in-control average run lengths of 200, 300, 

and 500, that is, ARL(x,y; 0) = ARLo, or equivalently, x = f(ARLo, y), 

for ARLo = 200, 300, and 500. 

ARLo • 500 

50 -

06 
< 

C  
0 
U 30 -
1 

25 -

3 
O 20 -

H 

1.70 1.90 2.10 2.30 2.50 2.70 

y = Inner control limit (std. units) 

2.90 3.10 

Figure 5. Graph of the modified objective function vs. the inner 
control limit for ARLo = 200, 300, and 500, and k = 1 
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y = Inner control limit (std.units) 

Figure 6. Control-limit combinations giving a fixed ARLo. 
Graph of x = f(ARLo, y), ARLo = 200, 300, 500 

Program P2311A.BAS written in TURBO BASIC and listed in Appendix A 

implements algorithms GEVAL and GMIN to find the optimal control limits 

for different values of the in-control average run length. A modified 

version of this program was used to generate the data necessary to 

graph the functions shown in Figure 5 and Figure 6. A summary of the 

results produced by this program is presented in Table 3. 

The analysis of the behavior of this control scheme for different 

combinations of the control limits indicates that: 

a. The optimal values for the control limits correspond to relative 

small values of the inner control limit (Figure 5). 

b. For a fixed in-control average run length, ARLo, each value of the 

inner control limit is associated to a value of the outer control 
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limit by the implicit function ARL(x,y;0) = ARLo. Moreover, for 

small values of the inner control limit, y, a small decrease in y 

causes an extremely large increase in the value of the outer 

control limit, x (Figure 6). 

Table 3. Optimal control limits for the 
{ R1 [ 1,1 ,x,=»], R2[2,3,y,<»] } family of 
control schemes (output from P2311A.BAS). 
Values of process mean and control limits 
are given in standard units 

1 Average 
I 

Run Length | Inner 
Control 
Limit: 
y 

1 Outer 1 
1 Control 1 
1 Limit: j 
1 X 1 

1 
1 In Control 
1 M = 0 

Out of Control | 
M = 1 1 

Inner 
Control 
Limit: 
y 

1 Outer 1 
1 Control 1 
1 Limit: j 
1 X 1 

1 100.00 11.461 1.642 4.081 1 
1 150.00 14.162 1.725 4.270 1 
1 200.00 16.533 1.795 4.310 1 
1 250.00 18.657 1 .853 4.277 1 
1 300.00 20.615 1 .893 4.313 1 
1 350.00 22.446 1 .927 4.302 1 
1 400.00 24.156 1.956 4.317 1 
1 450.00 25.826 1.981 4.367 1 
1 500.00 27.406 2.003 4.298 1 

These observations and the results obtained from the optimization, 

(the relative large values of the outer control limit) strongly suggest 

that, in order to find the global minimum, the out-of-control average 

run length should also be evaluated at the "extreme" point defined by 

ARL(+œ,y;0) = ARLo. Program P2311A.BAS can be easily modified to 

achieve this purpose. The out-of-control average run lengths obtained 

by the elimination of the rule "stop if a sample mean falls outside the 

+xa limits", that is, by setting x = +=, are presented in Table 4. 

These results show that for a fixed in-control average run length, the 
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out-of-controi run length is minimized if the outer control limit is 

eliminated. Figure 7 displays graphically the same results presented 

in Table 4. 

Table 5 shows the average run lengths as functions of the process 

mean (in standard units) for the optimal control limits corresponding 

to in-control average run lengths of 100, 200, 300, 400, and 500. 

These results were generated using program P2311B.BAS listed in 

Appendix A; this program can be easily changed to compute average-run-

length curves for other control limits. 

Table 4. Optimal control limit for the 
{ R 2 [ 2 , 3,y,Œ]} family of control 
schemes. Values of the process mean 
and the control limit are given in 
standard units 

1 Average Run Length | 1 
Control 1 Control 1 

j In Control | Out of Control | Limit: | 
1 M = 0 1 M = 1 1 y 1 

1 100.00 11.436 1.614 1 
1 150.00 14.146 1.717 1 

200.00 16.496 1.787 1 
1 250.00 18.618 1.837 1 
i 300.00 20.576 1.882 1 
1 350.00 22.409 1.916 1 
1 400.00 24.144 1.947 1 
1 450.00 25.797 1.974 1 
1 500.00 27.381 1.995 1 



www.manaraa.com

69 

Table 5. Optimal average run lengths for the 
{ R2[2,3,y,®] } family of control schemes 

Process I  Optimal Control Limits 
Mean I 1.614 1.787 1.882 

(in std. units) | 
1.947 1.995 

0.00 
0.05 
0 . 1 0  
0.15 
0 . 2 0  
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0 .60  
0.70 
0.80  
1.00 
1 .20  
1.40 
1 . 6 0  
1.80 

1 0 0 . 0  
98.6 
94.2 
87.6 
79.8 
71.4 
63.2 
55.6 
48.7 
42.6 
37.2 
28.7 
22.4 
17.7 
11.4 

8 . 2  
6.1  
4.7 
3.9 

Average 

200.0 
196.1 
185.5 
169.9 
151.8 
133.2 
115.5 
99.4 
85.3 
73.1 
62.7 
46.6 
35.1 
26.9 
16.5 
11.1  
7.8 
5.9 
4.6 

Run 

300.0 
293.8 
276.3 
251.0 
221.9 
192.5 
165.0 
140.4 
119.1 
100.9 
85.7 
62,4 
46.1 
34.7 
20 .6  
13.3 
9.2 
6.7 
5.1 

Length 

400.0 
391.2 
366.3 
330.7 
290.3 
249.9 
212.4 
179.3 
151.0 
127.1 
107.1 
76.9 
56.1 
41.6 
24.1 
15.3 
10.3 
7.4 
5.6 

500.0 
487.8 
455.4 
409.3 
357.3 
305.7 
258.4 
2 1 6 . 8  
181.5 
151.9 
127.4 
90.4 
65.3 
48.0 
27.4 
17.0 
11.3 
7.9 
5.9 
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Figure 7. Optimal control limits for the { R2t2,3,y,®] } family of control schemes. 
Values of the control limit are given in standard units 
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The optimal 'control schemes reduce significantly the average number 

of samples required to detect a shift in the process mean when they are 

compared to nonoptimal schemes; this fact is illustrated in Table 6. 

In this table, the column labeled ARLl contains the average run lengths 

corresponding to the optimal control scheme giving an in-control 

average run length of 200; the column labeled ARL2 contains the average 

run lengths corresponding to the nonoptimal scheme { R1[1,1,2,843,<=]. 

R2[2,3,2.200,®] }. The comparison of these two schemes in relative 

terms (column ARL2/ARL1) indicates that one might expect up to a 38% 

reduction in the number of samples required to detect a shift of one 

standard deviation in the process mean and, in absolute terms (column 

ARL2-ARL1), one might expect to take up to 20 fewer samples to detect 

small shifts in the process mean. This reduction is even more 

accentuated for larger in-control average run lengths; the column 

labeled ARL3 contains the optimal control scheme giving an in-control 

average run length of 500; the column labeled ARL4 contains the average 

run lengths corresponding to the scheme { R1[1,1,3.107,=], 

R2[2,3,2.500,»] }. The comparison of these two schemes reveals 

that one might expect a reduction of up to 67% in the number of samples 

required to detect a moderate shift in the process mean and that, for 

small shifts in the process mean, one might expect to take up to 66 

fewer samples with the optimal control scheme. These kinds of 

reductions are by no means negligible. 
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Table 6. Average-run-length comparisons 
optimal control schemes 

between optimal and non-

Proc. 
Mean 

M  

ARL2 
ARLl ARL2 ARL2-ARL1 

ARLl 
ARL3 ARL4 

ARL4 

A R L 3  
ARL4-ARL3 

0 . 0  
0 . 1  
0 . 2  
0 . 3  
0 . 4  
0 . 5  
0 . 6  
0 . 7  
0 . 8  
0 . 9  

1 . 0  
1 . 1  
1 . 2  
1 . 3  
1 . 4  
1 . 5  
1 . 6  
1 . 7  
1 . 8  
1 . 9  

200.0  
1 8 5 . 5  
1 5 1 . 8  
1 1 5 . 5  
8 5 . 3  
6 2 . 7  

4 6 . 6  

3 5 . 1  
2 6 . 9  
2 1 . 0  
1 6 . 5  

1 3 . 5  
1 1 . 1  
9 . 2  
7 . 8  
6 . 7  
5 . 9  
5 . 2  
4 . 6  
4 . 1  

200.0 
1 9 0 . 3  
1 6 5 . 5  
1 3 5 . 0  
106.0 
8 1 . 7  
62 .6  
48.1 
37.2 
29.0 
22 .8  
18.2 
1 4 . 6  
1 1 . 9  
9.8 
8 . 2  
6 . 9  
5 . 9  
5 . 1  
4 . 4  

1 . 0 0  
1 . 0 3  
1 . 0 9  
1 . 1 7  
1 . 2 4  
1 . 3 0  
1 . 3 4  
1 . 3 7  
1 . 3 8  
1 . 3 8  
1 . 3 8  
1 . 3 5  
1 . 3 2  
1 . 2 9  
1 . 2 6  
1 . 2 2  
1 . 1 8  
1 . 1 4  
1 . 1 1  
1 . 0 7  

. 0  
4 . 8  

1 3 . 7  
1 9 . 5  
2 0 . 7  
1 8 . 9  

1 6 . 0  
1 3 . 0  
1 0 . 2  

8 . 0  
6 . 3  
4 . 7  

3 . 6  
2 . 7  
2 . 0  
1 . 5  
1 . 1  
0 . 7  
0 . 5  
0 . 3  

5 0 0 . 0  
4 5 5 . 4  
3 5 7 . 3  
2 5 8 . 4  
1 8 1 . 5  
1 2 7 . 4  

9 0 . 4  
6 5 . 3  
4 8 . 0  
3 6 . 0  
2 7 . 4  
2 1 . 4  
1 7 . 0  
1 3 . 7  
1 1 . 2  
9 . 4  
7 . 9  
6 . 8  
5 . 9  

5 . 2  

5 0 0 . 0  
4 7 2 . 8  
4 0 5 . 0  
3 2 3 . 4  
2 4 8 . 1  
1 8 6 . 7  
1 3 9 . 6  
1 0 4 . 6  

7 8 . 7  
5 9 . 7  
4 5 . 7  
3 5 . 4  
2 7 . 6  
2 1 . 8  
1 7 . 4  
1 4 . 1  
1 1 . 5  
9 . 5  
8 . 0  
6 . 7  

1 . 0 0  
1 . 0 4  
1 . 1 3  
1 . 2 5  
1 . 3 7  
1 . 4 7  
1 . 5 4  
1.60 
1.64 
1.66 
1.67 
1.65 
1.63 
1.59 
1 . 5 5  
1 . 5 0  
1 . 4 5  
1 . 4 0  
1 . 3 5  
1 . 2 9  

. 0  
1 7 . 5  
4 7 . 7  
6 5 . 1  
6 6 . 6  
5 9 . 3  
4 9 . 2  
3 9 . 3  
3 0 . 7  
2 3 . 7  

1 8 . 4  
1 3 . 9  
1 0 . 6  

8 . 1  
6 . 2  
4 . 7  
3 . 6  
2 . 7  
2 . 0  
1 . 5  

B. The { R1[1,1,X,Œ], R3[3,4,y,Œ] } Family of Control Schemes 

In this section, the following family of control schemes is studied 

and optimized: those control schemes that declare the process out of 

control if 

a. a single sample mean falls x or more standard units away from 

the target mean, 

b. three of the last four sample means fall y or more standard 

units above the target mean, or 

c. three of the last four sample means fall y or more standard 

units below the target mean. 
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Figure 8 illustrates this type of control schemes. 

1 Standardized Sample Mean 
1 

Stop if one sample mean falls 
above this control limit: 

1 

1 
+x + — 

1 

Stop if 3 out of 4 sample means 
fall above this control limit; 1 1 1 1 1 1 I \ 1 1 1 1 1 1 1 1 1 \ \ 1 1 1 I

 
1 1 1 1 

.+ X
 

4-
Stop if 3 out of 4 sample means 
fall below this control limit: 

1 
0 + > 

j Sample Number 

1 
- y  +  _  —  -

1 

Stop if one sample mean falls 
below this control limit: 

1 

-X + 

1 
1 

Figure 3. The { Ri[ 1,1 ,x,°=], R3[3,4,y,®] } control scheme 

To define the nonabsorbing states of the Markov chain representa­

tion of this control scheme, it is necessary to keep track only of the 

last three sample points and their location relative to the control 

limits. If we let "B" represent a point falling in the interval (+y, 

+x), "0" represent a point falling in the interval (-y, +y), and "C" 

represent a point falling in the interval (-x, -y), at any time, the 

control chart can be thought of as being in one of the following twenty 

five transient states: 

1 ) 000 2 ) OOB 3 ) OOC 4 ) OHO 5 ) OBB 
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6 ) OBC 
11 ) BOB 
16 ) BCB 
21 ) CBO 

7 ) OCO 
12 ) BOC 
17 ) BCC 
22 ) CBB 

8 ) OCB 
13 ) BBO 
18 ) COO 
23 ) CBC 

9 ) OCC 
14 ) BBC 
19 ) COB 
24 ) CCO 

10 ) BOO 
15 ) BCO 
20 ) COG 
25 ) CCB 

with the obvious notation: "CBO", state No. 21, means that the last 

sample is in the interval (-y, +y), the next to the last sample is in 

(+y, +x) and the previous one in (-x, -y). 

Let ) be the standard normal cumulative distribution function, 

C.D.F., and u the process mean, then 

Po = Prob{Standardized sample mean falls in the interval (-y, +y)} 

= *(y-K) - *(-y-%), 

Pb = ProbCstandardized sample mean falls in the interval (+y, +x)} 

= - $(y-w), and 

Pc = Prob{standardized sample mean falls in the interval (-x, -y)} 

= $(-y-#) - $(-x-w), 

and the one-step, nonzero, transition probabilities, p(i,j)'s, between 

these nonabsorbing states are: 

p( 1, 1) = 
Po, p( 1, 2) = Pb, p( 1, 3) 

= 
PC, 

p( 2, 4) = 
Po. p( 2, 5) = Pb, p( 2 ,  6) 

= 
PC, 

p( 3, 7) = 
Po, p( 3, 8) = Pb, p( 3, 9) = PC, 

p( 4, 10) = Po, p( 4, 11) = Pb, p( 4, 12) 
= 
PC, 

p( 5, 13) = 
Po, p( 5, 14) = PC, 

p( 6, 15) = Po, p( 6, 16) = Pb, p( 6, 17) = 
PC, 

p( 7, 18) = 
Po, p( 7, 19) = Pb, p( 7, 20) 

= 
PC, 

p( 8, 21) - Po, p( 8, 22) = Pb, p( 8, 23) = 
PC, 

p( 9, 24) = 
Po, p( 9, 25) = Pb, 

p(lO, 1) = 
Po, p(io, 2) = Pb, p(lO, 3) = 

PC, 
p(ll. 4) = 

Po, p(ll, 6) 
= 
PC, 

p(l2, 7) = 
Po, P(12, 8) = Pb, p(l2. 9) = 

PC, 
p(l3. 10) 

= 
Po, P(13, 12) 

= 
PC, 

p(l4. 15) = 
Po, p(l4. 17) 

= 
PC, 

P(15, 18) 
= 
Po, p(l5. 19) = Pb, p(l5, 20) 

= 
PC, 

p(l6, 21) = 
Po, p(l6. 23) 

= 
PC, 

p(l7. 24) 
= 
Po, p(l7. 25) = Pb, 
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p(l8. 1) = Po, p(l8, 2) = Pb, p(l8, 3) = Pc, 
p(l9. 4) = Po, p(l9. 5) = Pb, p(l9. 6) = Pc, 

p(20. 7) = Po, p(20. 8) = Pb, 
p(21. 10) = Po, p(21. 11) = Pb, p(21. 12) = Pc, 
p(22. 13) = Po, p(22, 14) = Pc, 
p(23. 15) = Po, p(23. 16) = Pb, 

p(22, 

p(24. 18) = Po, p(24. 19) = Pb, 
p(25. 21) = Po, p(25. 22) = Pb. 

The problem of determining the values of the control limits, x and 

y, such that, for a given in-control average run length, the out-of-

control average run length is minimized, can be solved using the same 

techniques used in the previous section. 

Program P3411A.BAS written in TURBO BASIC and listed in Appendix B 

can be used to find the optimal control limits for different values of 

the in-control average run length. A summary of the results produced 

by this program is presented in Table 7. Figure 9 shows the graph of 

Table 7. Optimal control limits for the { Rl[l,l,x,=], 
R3[3,4,y,œ] } family of control schemes (output 
from P3411A.BAS). Values of control limits and 
process mean are given in standard units 

1 Average Run Length | Inner | Outer 1  
1  -+ + Control 1  Control 1  
1 In Control 1 Out of Control | Limit 1  Limit 1  
1  n = 0 1  M  = 1 1  y  1  X  1  

1  100.0 10.307 1.139 4.428 1  
1 150.0 12.303 1.218 4.542 1  
1  200.0 13.969 1.279 4.621 1  
1 250.0 15.431 1.321 4.681 1  
1 300.0 16.753 1.357 4.730 1  
1 350.0 17.971 1.386 4.775 1  
1 400.0 19.245 1.421 4.662 1  
1 450.0 20.599 1.451 4.624 1  
! 500.0 22.059 1.479 4.598 1  
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g(), the out-of-control average run length plus the penalty function, 

for different values of the in-control average run length; Figure 10 

shows ail the control-limit combinations resulting in in-control 

average run lengths of 100, 200, 300, 400, and 500. A modified version 

of the program P3411A.BAS was used to generate the data necessary to 

plot these functions. 

The behavior of the A.R.L. of this control scheme, { Rl[l,l,x,®], 

R3[3,4,y,=) }, is very similar to that of the control scheme 

{ Rl[l,l,x,=], R2[2,3,y,«] } discussed in the previous section and, as 

before, the examination of figures 9 and 10 and Table 7 strongly 

suggests that, in order to find the global minimum, the out-of-control 

average run length should also be examined at the "extreme" point 

defined by the equation ARL(+®,y; 0) = ARLo. Program P3411A.BAS can be 

easily modified to achieve this purpose. The out-of-control average 

run lengths obtained by the elimination of the rule "stop if a sample 

mean falls outside the +xo limits", that is, by setting x - +=, are 

presented in Table 8. These results show that for a fixed in-control 

average run length, the out-of-control run length is minimized if the 

outer control limit is eliminated. Figure 11 displays the results 

presented in Table 8. 
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Figure 10. Control-limit combinations giving a fixed in-control 
average run length, ARLo; ARLo = 100, 200 500 
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Table 8. Optimal control limit for the 
{ R3[3,4,y,=] } family of control 
schemes. Values of the process mean 
and the control limit are given in 
standard units. 

1 Average Run Length 1 

1 In Control | Out of. Control Limit: | 

1 M = 0 M = 1 1 y i 

1 100.0 10.264 1.118 1 

1 125.0 11.339 1.168 1 

1 150.0 12.303 1.208 1 

1 175.0 13.166 1.241 1 

1 200.0 13.967 1.269 1 

1 225.0 14.714 1.293 1 

1 250.0 15.420 1.315 i 

1 275.0 16.095 1.334 1 

1 300.0 16.740 1.351 1 

1 325.0 17.357 1.367 1 

1 350.0 17.951 1.382 1 

1 375.0 18.527 1.395 1 

1 400.0 19.105 1.408 1 

1 425.0 19.650 1.419 1 

1 450.0 20.218 1.430 1 

1 475.0 20.701 1.440 1 

1 500.0 21.195 1.450 1 
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Figure 11. Optimal control limits for the { R3[ 3,4, y,®] 1 family of control schemes. 
Values of the control limit are given in standard units 
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Table 9 shows the average run lengths as functions of the process 

mean (in standard units) for the optimal control limits corresponding 

to in-control average run lengths of 100, 200, 300, 400, and 500. 

These results were generated using program P3411B.BAS listed in 

Appendix B; this program can be easily changed to compute average-run-

length curves for other control limits. 

Table 9. Optimal average run lengths for the 
{ R3[3,4,y,®] } family of control schemes 

1 Process | Optimal Control Limits (in std. units) 1 
1 Mean | 
1 +_ 

1.1178 1.2687 1.3515 1.4077 1.4499 1 

1 ^ 1 Average Run Length 1 

1 0.00 100.0 200.0 300.0 400.0 500.0 1 
1 0.05 98.6 195.0 291.9 388.6 484.8 1 
1 0.10 93.2 181.7 269.7 356.9 443.2 1 
1 0.15 85.3 162.9 238.9 313.5 386.7 1 
1 0.20 76.3 142.1 205.4 266.9 326.8 1 
1 0.25 67.1 121.7 173.3 222.8 270.7 1 
1 0.30 58.4 103.1 144.7 184.2 222.1 1 
1 0.35 50.6 87.0 120.4 151.7 181.6 1 
1 0.40 43.8 73.4 100.2 125.1 148.7 1 
1 0.45 37.9 62.1 83.6 103.5 122.1 1 
1 0.50 32.9 52.7 70.1 86.0 100.8 1 
1 0.60 25.2 38.6 50.1 60.5 70.0 1 
1 0.70 19.7 29.0 36.8 43.7 50.0 1 
i 0.80 15.7 22.3 27.7 32.4 36.6 1 
1 0.90 12.8 17.6 21.4 24.7 27.6 1 
1 1.00 10.3 14.0 16.7 19.1 21.2 1 
1 1.20 7.8 9.8 11.3 12.5 13.6 1 
1 1.40 6.1 7.3 8.2 8.9 9.5 1 
! 1.60 5.0 5.8 6.3 6.7 7.1 1 
1 1.80 4.3 4.8 5.2 5.4 5.7 1 
1 2.00 3.9 4.2 4.4 4.6 4.7 1 

Table 10 depicts the ratio (as a function of the shift in the 

process mean) of the optimal A.R.L.s of the control scheme 
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{ R2[2,3,y,œ] } to the optimal A.R.L.s of the control scheme 

{ R3[3,4,y,°=] } and it shows that there is a substantial improvement 

in the number of samples required to detect a small or moderate shifts 

in the process mean when the second control scheme is used. Notice also 

that, for a fixed shift in the process mean, the larger the in-control 

average run length, the more advantageous the control scheme 

{ R3[3,4,y,=] } becomes. 

Table 10. Ratios of average run lengths: optimal 
control scheme { R2[2,3,y,®] } to optimal 
control scheme { R3[3,A,y,®] } 

1 Process | In - Control Average Run Length 
1 Mean | 

1 f 1 

100.00 200.00 300.00 400.00 500.00 1 

1 0.00 1.00 1.00 1.00 1.00 1.00 1 
1 0.20 1.05 1.07 1.08 1.09 1.09 
1 0.40 1.11 1.16 1.19 1.21 1.22 1 
1 0.60 1.14 1.21 1.24 1.27 1.29 
1 0.80 1,13 1.21 1.25 1.29 1.31 1 
1 1.00 1.09 1.17 1.22 1.26 1.29 1 
1 1.20 1.05 1.13 1.18 1.22 1.25 1 
1 1.40 1.00 1.07 1.12 1,15 1.18 1 
1 1.60 0.95 1.01 1.06 1.10 1.12 1 
1 1.80 0.90 0.96 0.99 1,03 1.04 1 
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C. The { R2[2,3,x,m], R3[3,4,y,»] } Family of Control Schemes 

In this section, the following family of control schemes is studied 

and optimized: those control schemes that declare the process out of 

control if 

a. two out of the last three sample means fall x or more standard 

units above the target mean, or 

b. two out of the last three sample means fall x or more standard 

units below the target mean,, or 

c. three out of the last four sample means fail y or more standard 

units above the target mean, or 

d. three out of the last four sample means fall y or more standard 

units below the target mean," 

Figure 12 illustrates this type of control schemes. 

To define the nonabsorbing states of the Markov chain representa­

tion of this control scheme, it is necessary to keep track of the last 

three sample points and their location relative to the control limits. 

If we let "A" represent a sample mean falling in the interval (+x, +=), 

"B" represent a sample mean falling in the interval (+y, +x), "0" 

represent a sample mean falling in the interval (-y, +y), "C" represent 

a sample mean falling in the interval (-x, -y), and "D" represent a 

sample mean falling in the interval (-=, -x), the control chart, at any 

time, can be thought of as being in one of the transient states "000", 

"GOA", "DCB", where the notation should be obvious: "DCB" means 
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that the last sample mean is in the interval (+y, +x), the next to the 

last sample mean is in the interval (-x, -y), and the previous one in 

Stop 
fall 

if 2 out of 3 sample means 
above this control limit: +x 

1 
1 standardized Sample Mean 

1 

1 

Stop 
fall 

if 3 out of 4 sample means 
above this control limit: +y 

1 

Stop 
fall 

if 3 out of 4 sample means 
below this control limit: 

O
 

1 

i 

1 Sample Number 

1 

1 

Stop 
fall 

if 2 out of 3 sample means 
below this control limit: -X 

1 

1 
H 

1 

Figure 12. The { R2[2,3,x,<=], R3[3,4,y,=] } control scheme 

Notice that in order to determine the transient states of the 

Markov chain representation of this control scheme, it is necessary to 

examine the 125 possible arrangements of five objects (A, B, C, D, and 

O) taken 3 at a time. After these transient states have been defined, 

the transition probabilities among them have to be defined. This task, 

although simple, is very time consuming, tedious and prone to errors if 

done "by hand." To eliminate the possibility of a mistake and to speed 

up the generation of the transition probabilities, a set of subroutines 
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in TURBO BASIC was used to generate the transient states, their 

transition probabilities, and to write the code necessary to initialize 

the corresponding (l-Q) matrix; these subroutines (file CHECKST.INC) 

and the main program (file GENSTATE.BAS) are listed in Appendix C; 

these subroutines can be easily extended and used to generate the non-

absorbing states and the transition probabilities for other control 

schemes. For the family of control schemes under consideration, there 

are 91 transient states: 

1 000 2 ) OOA 3 ) OOB 4 ) OOC 5 ) OOD 
6 OAO 7 ) CAB 8 ) OAC 9 ) OAD 
10 GEO 11 ) OBA 12 ) OBB 13 ) OBC 14 ) OBD 
15 OCO 16 ) OCA 17 ) OCB 18 ) OCC 19 ) CCD 
20 ODO 21 ) ODA 22 ) ODE 23 ) ODC 
24 AOO 25 ) AGE 26 ) ADC 27 ) AOD 
28 ABO 29 ) ABC 30 ) ABD 
31 AGO 32 ) ACE 33 ) ACC 34 ) ACD 
35 ADO 36 ) ADB 37 ) ADC 
38 BOO 39 ) BOA 40 ) BOB 41 ) BOC 42 ) EOD 
43 BAO 44 ) BAC 45 ) BAD 
46 BBO 47 ) BBC 48 ) EBD 
49 ECO 50 ) BCA 51 ) BCB 52 ) BCC 53 ) BCD 
54 EDO 55 ) BDA 56 ) BDB 57 ) BDC 
58 COO 59 ) COA 60 ) COB 61 ) COC 62 ) COD 
63 CAO 64 ) CAB 65 ) CAC 66 ) CAD 
67 CBO 68 ) CBA 69 ) CBB 70 ) CBC 71 ) CBD 
72 CCO 73 ) CCA 74 ) CCB 
75 CDO 76 ) CDA 77 ) CDB 
78 000 79 ) DOA 80 ) DOB 81 ) DOC 
82 DAO 83 ) DAB 84 ) DAC 
85 DBO 86 ) DBA 87 ) DBB 88 ) DBC 
89 DCO 90 ) DCA 91 ) DCB 

Let $() be the standard normal C.D.F and u  the process mean, then 

Po = Prob{ a standardized sample mean falls in the interval (-y,+y) } 

= i(y-ui) - $(-y-p), 

Pa = Prob{ a standardized sample mean falls in the interval (+x,+®) } 

= 1 - $(+x-%), 
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Pb = Prob{ a standardized sample mean falls in the interval (+y,+x) } 

=  $ ( % - % )  -  i ( y - n ) ,  

Pc = Prob{ a standardized sample mean falls in the interval } 

= $(-y-^) - $(-x-^), 

Pd = Prob{ a standardized sample mean falls in the interval (-=,-%) } 

=  $ ( - % - % ) ,  

and the one-step, nonzero, transition probabilities, p(i,j)'s, between 

the nonabsorbing states are: 

p 1, 1) = Po, p( 1, 2) = Pa, p( 1, 3) 
= 
Pb, p( 1, 4) 

= 
PC, 

p 1, 5) 
= 
Pd, 

p( 2, 9) p 2, 6) 
= 
Po, p( 2. 7) = Pb, p( 2, 8) = PC, p( 2, 9) Pd, 

p 3, 10) 
= 
Po, p( 3. 11) 

= Pa, p( 3, 12) 
= Pb, p( 3, 13) PC, 

p 3, 14) 
= 
Pd, 

p( 4, 18) p 4, 15) 
= 
Po, p( 4, 16) — Pa, p( 4, 17) = Pb, p( 4, 18) PC, 

p 4, 19) 
= 
Pd, 

p( 5, 23) p 5, 20) 
= 
Po, p( 5, 21) 

= Pa, p( 5, 22) = Pb, p( 5, 23) P C ,  

p 6, 24) 
= 
Po, p( 6, 25) 

= 
Pb, p( 6, 26) 

= 
P C ,  p( 6, 27) Pd, 

p 7, 28) 
= 
Po, p( 7, 29) 

= 
P C ,  p( 7, 30) 

= 
Pd, 

p( 8, 34) p 8, 31) 
= 
Po, p( 8, 32) 

= Pb, p( 8, 33) 
= 

P C ,  p( 8, 34) Pd, 

p 9, 35) 
= 
Po, p( 9, 36) = Pb, p( 9, 37) 

= 
P C ,  

p(lO, 41) p 10, 38) 
= 
Po, p(10. 39) 

= 
Pa, p(10, 40) 

= Pb, p(lO, 41) 
= 
PC, 

p 10, 42) 
= 
Pd, 

p 11, 43) 
= 
Po, p(ll, 44) 

= 
P C ,  p(ll, 45) 

= Pd, 

p 12, 46) 
= 
Po, p(12. 47) 

= 
P C ,  p(l2. 48) 

= 
Pd, 

p(l3. 52) p 13, 49) 
= 
Po, p(l3. 50) = Pa, p(13. 51) 

= Pb, p(l3. 52) P C ,  

p 13, 53) 
= 
Pd, 

p(l4. 57) p 14, 54) 
= 
Po, p(l4, 55) 

= 
Pa, p(l4. 56) 

= Pb, p(l4. 57) PC, 

p 15, 58) 
= 
Po, p(15. 59) 

= Pa, p(l5, 60) 
= 

P b ,  p(l5. 61) 
= 

P C ,  

p 15, 62) 
= 
Pd, 

66) p 16, 63) 
= Po, p(16. 64) Pb, p(l6. 65) 

= 
PC, p(l6. 66) 

= Pd, 

p 17, 67) 
= 
Po, p(17. 68) 

= 
Pa, p(l7. 69) 

= 
Pb, p(l7. 70) P C ,  

p 17, 71) 
= Pd, 

p 18, 72) 
= 
Po, p(18. 73) 

= Pa, p(l8. 74) 
= Pb, 

p 19, 75) — Po, p(l9. 76) 
= Pa, p(19, 77) 

= 
Pb, 

p(20. 81) p 20, 78) 
= 
Po, p(20. 79) = Pa, p(20. 80) 

= Pb, p(20. 81) P C ,  

p 21, 82) 
= 
Po, p(21, 83) 

= 
Pb, p(21, 84) 

= 
P C ,  

p(22. 88) p 22, 85) 
= 
Po, p(22. 86) 

= Pa, p(22. 87) 
= Pb, p(22. 88) P C ,  

p 23, 89) 
= 
Po, p(23. 90) Pa, p(23. 91) 

= 
Pb, 

p(24. 4) p 24, 1) 
= 
Po, p(24. 2) = Pa, p(24. 3) = 

Pb, p(24. 4) = P C ,  

p 24, 5) 
= 
Pd, 

p 25, 10) 
= 
Po, p(25. 13) — P C ,  p(25. 14) Pd, 
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p(26. 15) 
= 
Po, p(26, 16) 

= 
Pa, p(26. 17) 

= Pb, p(26. 18) 
= PC, 

p(26. 19) 
= 
Pd, 

p(27. 23) p(27. 20) 
= 
Po, p(27. 21) 

= Pa, p(27. 22) 
= 
Pb, p(27. 23) PC, 

p(28. 38) 
= 
Po, p(28. 41) 

= 
PC, p(28. 42) 

= 
Pd, 

p(29. 49) 
= 
Po, p(29. 52) 

= PC, p(29. 53) 
= Pd, 

p(30. 54) = Po, p(30, 57) 
= 

P C ,  
p(31. 61) p(31. 58) 

= 
Po, p(31, 59) 

= 
Pa, p(31. 60) Pb, p(31. 61) PC, 

p(31. 62) 
= 
Pd, 

71) p(32. 67) 
= 
Po, p(32. 70) 

= 
P C ,  p(32. 71) Pd, 

p(33, 72) 
= 
Po, p(33. 73) 

= 
Pa, p(33. 74) Pb, 

p(34, 75) 
= Po, p(34. 76) = Pa, p(34, 77) 

= 
Pb, 

p(35. 81) p(35, 78) 
= 
Po, p(35. 79) 

= 
Pa, p(35. 80) 

= 
Pb, p(35. 81) P C ,  

p(36, 85) 
= 
Po, p(36. 88) 

= 
P C ,  

91) p(37, 89) Po, p(37. 90) 
= Pa, p(37, 91) 

= 
Pb, 

p(38. 4) p(38, 1) 
= 
Po, p(38. 2) 

= 
Pa, p(38. 3) Pb, p(38. 4) P C ,  

p(38, 5) = Pd, 
9) p(39, 6) 

= 
Po, p(39. 8) = 

P C ,  p(39. 9) 
= Pd, 

p(40, 10) 
= Po, p(40. 13) 

= 
P C ,  p(4G, 14) Pd, 

p(41, 18) p(41, 15) 
= Po, p(41, 16) 

= 
Pa, p(41. 17) Pb, p(41, 18) 

= 
P C ,  

p(41, 19) 
= Pd, 

p(42. 23) p(42, 20) 
= Po. p(42. 21) 

= 
Pa, p(42. 22) 

= 
Pb, p(42. 23) P C ,  

p(43. 24) = Po, p(43. 26) 
= 

P C ,  p(43. 27) 
= 
Pd, 

p(44, 31) 
= Po, p(44. 33) 

= 
P C ,  p(44, 34) Pd, 

p(45. 35) 
= Po, p(45. 37) 

= Pc, 
42) p(46. 38) 

= Po, p(46. 41) 
= 
Pc, p(46. 42) Pd, 

p(47, 49) 
= Po, p(47, 52) 

= 
Pc, p(47. 53) 

= 
Pd, 

p(48. 54) 
= 
Po, p(48. 57) 

= 
Pc, 

p(49. 61) p(49. 58) 
= Po, p(49. 59) 

= 
Pa, p(49. 60) 

= 
Pb, p(49. 61) 

= PC, 

p(49. 62) 
= Pd, 

p(50, 66) p(50. 63) 
= Po, p(50. 65) 

= Pc, p(50, 66) s s  Pd, 

p(51, 67) 
= Po, p(51, 70) 

= 
Pc, p(51, 71) Pd, 

p(52. 72) 
= 
Po, p(52. 73) 

= 
Pa, p(52. 74) = 5  Pb, 

p(53, 75) = Po, p(53. 76) = Pa, p(53. 77) =S Pb, 
p(54, 81) p(54, 78) 

= Po, p(54, 79) 
= 
Pa, p(54. 80) 

= Pb, p(54, 81) Pc, 

p(55, 82) 
= 
Po, p(55. 84) 

= Pc, 

p(56, 85) 
= Po, p(56. 88) 

= 
Pc, 

91) p(57, 89) 
= Po, p(57. 90) = Pa, p(57. 91) 

= 
Pb, 

p(58. 4) p(58. 1) = Po, p(58. 2) - Pa, p(58. 3) 
= 
Pb, p(58. 4) Pc, 

p(58. 5) = Pd, 
p(59, 9) p(59, 6) 

= 
Po, p(59. 7) = 

Pb, p(59. 8) 
= 

P C ,  p(59, 9) Pd, 

p(60. 10) = Po, p(60. 11) 
= 
Pa, p(60. 12) 

= Pb, p(60. 13) Pc, 

p(60. 14) = Pd, 
17) p(61. 15) 

= 
Po, p(61. 16) 

= Pa, p(61, 17) 
= Pb, 

p(62. 20) 
= Po, p(62, 21) 

= 
Pa, p(62. 22) Pb, 

p(63, 27) p(63. 24) 
= 
Po, p(63. 25) 

= 
Pb, p(63. 26) 

= PC, p(63, 27) Pd, 

p(64. 28) = Po, p(64. 29) 
= 
Pc, p(64. 30) 

= Pd, 

p(65. 31) 
= 
Po, p(65. 32) 

= 
Pb, 

p(66, 35) 
= Po, p(66. 36) 

= 
Pb, 

p(67. 41) p(67. 38) 
= 
Po, p(67. 39) 

= 
Pa, p(67, 40) =s Pb, p(67. 41) P C ,  

p(67. 42) 
= 
Pd, 
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p(68. 43) = 
Po, p(68, 44) = 

Pc, p(68, 45) 
= 
Pd, 

p(69. 46) = 
Po, p(69. 47) = Pc, p(69, 48) 

= 
Pd, 

p(70. 49) = Po, p(70, 50) = 
Pa, p(70, 51) = 

Pb, 
p(71. 54) = 

Po, p(71. 55) = 
Pa, p(71, 56) 

= 
Pb, 

p(72. 58) = 
Po, p(72. 59) = 

Pa, p(72. 60) = 
Pb, 

p(73. 63) 
= 
Po, p(73. 64) = 

Pb, 
p(74, 67) = 

Po, p(74. 68) = 
Pa, p(74, 69) = 

Pb, 
p(75. 78) = 

Po, p(75. 79) = 
Pa, p(75, 80) = 

Pb, 
p(76. 82) 

= 
Po, p(76, 83) = 

Pb, 
p(77. 85) = 

Po, p(77. 86) = 
Pa, p(77. 87) 

= 
Pb, 

p(78. 1) = Po, p(78. 2) = 
Pa, p(78, 3) = 

Pb, p(78, 4) = 
p(78. 5) 

= 
Pd, 

p(79. 6) = 
Po, p(79, 7) = 

Pb, p(79. 8) 
= 
PC, p(79, 9) = 

p(80. 10) = 
Po, p(80. 11) = 

Pa, p(80, 12) = 
Pb, p(80. 13) = 

p(80. 14) = 
Pd, 

p(80, p(80. 

p(81, 15) = Po, p(81. 16) = 
Pa, p(81, 17) = 

Pb, 
p(82. 24) = 

Po, p(82. 25) = Pb, p(82. 26) = 
PC, p(82. 27) = 

p(83. 28) = 
Po, p(83. 29) = Pc, p(83, 30) = 

Pd, 
p(84. 31) = 

Po, p(84. 32) = 
Pb, 

p(83, 

p(85. 38) = 
Po, p(85. 39) = 

Pa, p(85. 40) = 
Pb, p(85. 41) = 

p(85. 42) 
= 
Pd, 

p(86. 43) = 
Po, p(86. 44) = 

Pc, p(86, 45) 
= 
Pd, 

p(87. 46) = 
Po, p(87. 47) = Pc, p(87. 48) = 

Pd, 
p(88, 49) 

= 
Po, p(88, 50) = 

Pa, p(88. 51) = Pb, 
p(89. 58) = 

Po, p(89. 59) = 
Pa, p(89, 60) 

= 
Pb, 

p(90. 63) = 
Po, p(90. 64) = 

Pb, 
p(91. 67) = 

Po, p(91. 68) = 
Pa, p(91. 69) = 

Pb. 

Pd, 

The problem of finding the values of the control limits, x and y, 

such that, for a given in-control A.R.L., the out-of-control A.R.L. is 

minimized, can be solved using penalty functions and inverse parabolic 

interpolation to approximate the global minimum. Program P3423A.BAS 

written in TURBO BASIC and listed in Appendix D can be used to find the 

optimal control limits for different values of the in-control A.R.L. 

The results produced by this program are presented in Table 11 and 

Figure 13. 

Figure 14 shows the control-limit pairs resulting in in-control 

average run lengths of 100, 200, ..., 500, that is, the graph of 

ARL(x,y;0) = ARLo (or equivalently, x = f(ARLo,y) ) for ARLo = 100, 
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200, 500. Figure 15 shows the out-of-control A.R.L., ARLl, as a 

function of the inner control limit, y, and the in-control A.R.L., 

ARLo, that is, ARLl = ARL(x,y; 1) where the value of x is selected such 

that ARL(x,y;0) = ARLo. This graph clearly indicates that the optimal 

value for the inner control limit occurs at an interior point of the 

feasible region. 

Table 11. Optimal control limits for the { R2[2,3,x,®], 
R3[3,4,y,=] } family of control schemes 
(output from P2334A.BAS). Values of control 
limits are given in standard units 

1 Average Run Length | Control Limits 1 
1 
1 In Control 
1 _ _ 

jOut of Control| y 1 X 1 
1 
1 100.00 9.95 1 1.186 1.960 1 
1 125.00 10.93 1 1.228 2.018 1 
1 150.00 11.83 1 1.263 2.064 1 
1 175.00 12.65 1 1.292 2.104 1 
1 200.00 13.42 1 1.318 2.138 1 
1 225.00 14.13 1 1.340 2.169 1 
1 250.00 14.81 1 1.360 2.196 1 
1 275.00 15.46 1 1.378 2.220 1 
1 300.00 16.08 1 1.395 2.243 1 
1 325.00 16.67 1 1.410 2.263 1 
1 350.00 17.24 1 1.424 2.282 1 
1 375.00 17.79 1.437 2.300 1 
1 400.00 18.32 1 1.449 2.317 1 
1 425.00 18.84 1 1.461 2.332 1 
1 450.00 19.34 1 1.471 2.347 1 
1 475.00 19.82 1 1.482 2.361 1 
1 500.00 20.30 1 1.491 2.374 1 
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2.20 

2 00 

1.90 
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1.70 
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1.30 

200 0 400 

In-Control Average Run Length 

Figure 13. Optimal control limits for the { R2[ 2,3, x,®l, R3[ 3,4, y,»] } family 
of control schemes. Values of the control limits are given in 
standard units 
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10 

^ y = Inner Control Limit (Standard units) 

Figure 14. Control limit pairs for the control scheme { R2[2,3,x, 
R3[3,4,y,=] } giving a fixed in-control average run 
length, ARLo; ARLo = 100, 200, 500 

Inner Control Limit (Standard units) 

Figure 15. Graph of the out-of-control average run length vs. the 
inner control limit for ARLo = ICQ, 200, ..., 500 
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Table 12 shows the average run lengths, as functions of the shift 

in the process mean (in standard units), corresponding to the optimal 

control limits for in-control average run lengths of 100, 200, 

500. These results were generated using the program P3A23B.BAS listed 

in Appendix D; this program can be easily modified to compute A.R.L. 

curves for other in-control average run lengths. 

Table 1 2 .  Optimal average run lengths for the 
{  R 2 [ 2 , 3 , X , Œ ] ,  R 3 [ 3,A,y,®] } family of control 
schemes 

1 1 Optimal Control Limits (in std. units) 1 
1 Process | y = 1.186 1.318 1.395 1.449 1.491 i 
1 Mean j x = 1.960 2.138 2.243 2.317 2.374 1 

Average Run Length 1 

1 0.00 100.0 200.0 300.0 400.0 500.0 1 
1 0.05 98.0 195.1 291.7 388.1 484.4 1 
1 0.10 92.5 181.5 269.2 356.0 442.4 1 
1 0.15 84.6 162.4 238.0 312.2 385.5 1 
1 0.20 7 5 . 4  141.3 204.1 265.2 325.1 1 
1 0.25 66.1 120.6 171.8 221.0 268.8 1 
1 0.30 57.4 101.9 143.1 182.2 220.1 1 
1 0.35 49.6 85.8 118.7 149.8 179.6 1 
1 0.40 42.7 72.1 98.5 123.1 146.6 1 
i 0.45 36.9 60.8 82.0 101.6 120.1 1 
1 0.50 31.9 51.5 68.5 84.2 99.0 1 
1 0.60 24.3 37.5 48.7 58.9 68.4 1 
1 0.70 18.8 28.0 35.6 42.3 48.5 1 
1 0.80 14.9 21.4 26.6 31.2 35.4 1 
1 0.90 12.1 16.7 20.4 23.6 26.5 1 
1 1.00 10.0 13.4 16.1 18.3 20.3 1 
1 1.25 6.7 8.4 9.7 10.7 11.6 1 
! 1.50 5.0 5.9 6.6 7.1 7.6 1 
1 1.75 3.9 4.5 4.9 5.2 5.5 1 
1 2.00 3.3 3.7 3,9 4.1 4.3 1 
1 2.25 2.9 3.2 3.3 3.5 3.6 1 
1 2.50 2.6 2.8 3.0 3.0 3.1 1 
1 2.75 2.4 2.6 2.7 2.7 2.8 1 
1 3.00 2.3 2.4 2.5 2.5 2.5 1 

+ 
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Table 13 shows the ratios of the optimal A.R.L.s corresponding to 

the control scheme { R3[3,4,y,®] } to those corresponding to the 

control scheme { R2[2,3,x,®], R3[3,A,y,œ] } as functions of the shift 

in the process mean. These ratios show that some improvement (in the 

average run length) over the single rule "three out of four" is 

attained by combining the "two out of three" and the "three out of 

four" control rules. However, this reduction in the A.R.L. is almost 

negligible for small shifts in the process mean (less than one standard 

deviation) and large in-control average run lengths (larger than 300). 

On the other hand, the control scheme { R2[2,3,x,<=], R3[3,4,y,=] } is 

clearly superior to the control scheme { R3[3,4,y,®] } for the detection 

of large shifts in the process mean. 

Table 13. Ratios of average run lengths: optimal control 
scheme { R3[3,4,y,®] } to optimal control 
scheme { R2[2,3,x,®], R3[3,4,y,®] } 

1 Process | In - Control Average Run Length | 
1 Mean j 1 

100 200 300 400 500 1 

1 0.00 1.00 1.00 1.00 1.00 1.00 1 
1 0.10 1.01 1.00 1.00 1.00 1.00 1 
1 0.20 1.01 1.01 1.01 1.01 1.01 1 
1 0.30 1.02 1.01 1.01 1.01 1.01 1 
1 0.40 1.03 1.02 1.02 1.02 1.01 1 
1 0.50 1.03 1.02 1.02 1.02 1.02 1 
1 0.60 1.04 1.03 1.03 1.03 1.02 1 
1 0.70 1.05 1.04 1.04 1.03 1.03 1 
1 0.80 1.05 1.04 1.04 1.04 1.04 1 
1 0.90 1.06 1.05 1.05 1.04 1.04 1 
1 1.00 1.06 1.06 1.05 1.05 1.05 1 
1 1.25 1.09 1.08 1.07 1.07 1.06 1 
1 1.50 1.12 1.09 1.08 1.08 1.07 1 
1 1.75 1.15 1.11 1.10 1.10 1.08 1 
1 2.00 1.18 1.14 1.13 1.12 1.10 1 
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D. The { Rl[l,i,w,»], R2[2,3,x,=], R3[3,4,y,"] } Family of 

Control Schemes 

The last family of control schemes studied in this Chapter is the 

family comprised of control schemes that declare the process out of 

control if 

a. a single sample mean falls w or more standard units away from 

the sample mean, or 

b. two out of the last three sample means fall x or more standard 

units above the target mean, or 

c. two out of the last three sample means fall x or more standard 

units below the target mean, or 

d. three out of the last four sample means fall y or more standard 

units above the target mean, or 

e. three out of the last four sample means fall y or more standard 

units below the target mean." 

Figure 16 illustrates this type of control schemes. 

To define the nonabsorbing states of the Markov chain representa­

tion of this control scheme, it is necessary to keep track of the last 

three sample points and their location relative to the control limits. 

If we let "A" represent a sample mean falling in the interval (+x, +w), 

"B" represent a sample mean falling in the interval (+y, +x), "0" 

represent a sample mean falling in the interval (-y, +y), "C" represent 

a sample mean falling in the interval (-x, -y), and "D" represent a 

sample mean falling in the interval (-w, -x), the control chart, at any 
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time, can be thought of as being in one of the transient states "000", 

"OCA", "DCB", where the notation is the same one used in the 

previous section; for example, "OOA" means that the last sample mean is 

in the interval (+x, +w) and the two previous ones are in the interval 

(-y, +y). 

1 
1 
1 
Standardized Sample Mean 

Stop if one sample mean falls 
above this control limit: +w 

1 
1 
+ -

1 

Stop if 2 out of 3 sample means 
fall above this control limit: +x 

1 
1 

•f-
1 

Stop if 3 out of 4 sample means 
fall above this control limit: +y 

1 
1 

1 

Stop if 3 out of 4 sample means 
fall below this control limit: 

0 

-y 

1 
+ 

1 
1 
+-

1 

Sample Number 

Stop if 2 out of 3 sample means 
fall below this control limit: -X 

1 
1 

i  

Stop if one sample mean falls 
below this control limit: -w 

1 
1 

1 
1 

Figure 16. The { Rl[l,l,w,®], R2[2,3,x,®], R3[3,4,y,e] } control 
scheme 
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Notice that the transient states of the Markov chain representation 

of this control scheme correspond to the same 91 transient states of 

the control scheme discussed in the previous section, { R2[2,3,x,®], 

R3[3,4,y,=] }, No more transient states are generated by the 

inclusion of the control rule Rl[l,l,w,<=] because this control rule 

does not require any prior information about the status of the control 

chart to indicate an out-of-control situation since this rule generates 

an out-of-control signal based entirely on the current sample mean. 

Moreover, the transition probabilities among the transient states 

corresponding to the family { Rl[l,l,w,œ], R2[2,3,x,®], 

R3[3,4,y,œ] } are the same as those corresponding to the family 

{ R2[2,3,x,®], R3[3,4,y,"] } as long as the definitions of Pa and 

Pd are modified accordingly. 

In summary, if Po, Pa, Pb, Pc, and Pd are defined as follows, 

Po = Prob{ a standardized sample mean falls in the interval (-y,+y) } 

=  $ ( y - % )  -  ̂ ( - y - j n ) ,  

Pa = Prob{ a standardized sample mean falls in the interval (+x,+®) } 

= $(+w-w) - <f>(+x-At), 

Pb = Prob{ a standardized sample mean falls in the interval (+y,+x) } 

= H x - f x )  - H y - n ) ,  

Pc = Prob{ a standardized sample mean fails in the interval (-x,-y) } 

= $(-y-(i) - $(-%-%), 

Pd = Prob{ a standardized sample mean falls in the interval (-=,-%) } 

= $(-x-w) - #(-w-ju) 
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(where 4>() is the standard normal C,D,F, and i x  i s  the process mean), 

then the one-step, nonzero, transition probability between state i and 

state j, p(i,j), i = 1,2,3, ..., 91, j = 1,2,3, ..., 91, can be 

computed using the same formulas given on pages 85 to 87. 

For given values of the control limits and the process mean, the 

expected run length (given that the chart starts in state "OCX)") is the 

first component of the vector 
- 1  

EI = (I - Q) e 

where I is a 91x91 identity matrix, Q is a 91x91 matrix containing the 

transition probabilities between the transient states, and e is a 91-

dimensional vector of I's; consequently, the expected run length is a 

function of the process mean u and the three control limits w, x, and 

y, that is, ARL = ARL(w,x,y; u). The problem is to determine the 

values of the control limits such that for a given in-control average 

run length, the out-of-control average run length is minimized; that 

is, 

Minimize h(w,x,y) = ARL(w,x,y; 1) subject to 

ARL(w,x,y; 0) = ARLo, and 0 < y < x < w. 

For a given in-control average run length, ARLo, the constraint 

ARL(w,x,y; 0) = ARLo can be used to express one of the control limits, 

say w, as a function of the other two control limits: w = f(x,y; ARLo); 

then the minimization problem becomes: 

Minimize g(x,y) = ARL( f(x,y; ARLo), x, y; 1) subject to 

0 < y < X < f(x,y; ARLo). 
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Program P342311A.BAS written in TURBO BASIC and listed in Appendix 

E can be used to evaluate the objective function, g(x,y), (for a given 

ARLo) at different pairs (x,y) satisfying the inequality constraints. 

Figure 17 shows the graph of the out-of-controi average run length as a 

function of the control limits x and y ; the value of the outer control 

limit, M (not shown in the figure), was selected such that 

ARL(w,x,y; 0) = 200. 

1J.6S 

13.Ô0 
< 

O 
L, 
w 
c 
0 
u 
1 

13.55 -

13.50 -

0 
1 
3 
o 

2.20 

X = Middle Control Limit (Standard units) 

Figure 17. Out-of-controL average run length (for an in-controL A.R.L, 
of 200) as a function of the inner control limit, y, and 
the middle control limit, x 

Figure 17 shows that, for ARLo = 200, the optimal value for the 

inner control limit, y, lies in the interval (1.31, 1.34) and that the 

optimal value for the middle control limit, x, lies in the interval 

(2.10, 2.20); moreover, for every fixed value of y, it is possible to 
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find a value for the middle control limit x such that the out-of-

control average run length is minimized. Table 14 shows control-limit 

combinations in which the outer control limit, w, has been selected 

such that the in-control A.R.L. is equal to 200 and the middle control 

limit, X, has been selected such that, for the given value of the inner 

control limit, y, the out-of-control A.R.L. is minimized. 

Table 14. Control limits for the family of control 
schemes { Rl[l,l,w, = ], R2[2,3,x,<»], 
R3[3,4,y,®] } resulting in an in-control 
A.R.L. of 200. Control limits given in 
standard units 

1 
1 

Control 
y X 

Limits 
w 

Out-of- 1 
Control ARL | 

1 1.27 2.845 4.525 14.022 1 
1 1.28 2.430 4.264 13.646 1 

1 1.29 2.328 3.979 13.493 1 
1 1.30 2.252 3.951 13.410 1 
1 1.31 2.210 3.819 13.364 1 

1 1.32 2.177 3.732 13.344 1 
1 1.33 2.150 3.666 (13.343) 1 

1 1.34 2.120 3.661 13,355 1 

1 1.35 2.100 3.620 13.379 1 
1 1.40 2.025 3.528 13.604 1 

From Table 14, it is possible to obtain an approximation to the 

optimal solution to the problem 

Min { ARL(w,x,y; 1) | ARL(w,x,y; O) = 200, 0<y<x<w}; 

this solution is 

w = 3.666, X = 2.15, y = 1.33, and ARL(3.666, 2.15, 1.33; 1) = 13.343. 

If a better approximation to the optimal is desired, the data presented 

in Table 14 and program P342311A.BAS can be used to obtain it; a better 
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value for the inner control limit, y, can be computed using inverse 

parabolic interpolation on the three best points, 

2 2 
(1.33-1.32) (13.343-13.355) - (1.33-1.34) (13.343-13.344) 

y = 1.33 

2[ (1.33-1.32)(13.343-13.355)-(l,33-1.34)(13.343-13.344) ] 

= 1.33 - (-.0000011 / -.00026) = 1.325, 

and the best values for x and w corresponding to this new value of y are 

2.152 and 3.701, respectively. This procedure can be repeated until a 

specified tolerance is achieved. For practical purposes, two correct 

decimal places in the values of the control limits are sufficient. 

Figure 18 shows the graph of the out-of-control A.R.L. as a 

function of the inner and middle control limits; the value of the outer 

control limit, not shown in the figure, was selected such that the in-

control A.R.L. equals 400. The data necessary to graph this function 

was generated by the program P342311A.BAS. This figure shows that the 

optimal value for the middle control limit, x, lies in the interval 

(2.2, 2.4) and the optimal value for the inner control limit, y, lies 

in the interval (1,45, 1.50). 

Table 15 shows control-limit combinations in which the outer 

control limit has been selected such that the in-control A.R.L. equals 

400 and the middle control limit has been selected such that it 

minimizes the out-of-control A.R.L. for the given value of the inner 

control limit. From this table, it is possible to obtain an 

approximate optimal solution to the problem 

Min { ARL(w,x,y; 1) | ARL(w,x,y; 0) = 400, 0<y<x<w}; 
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Figure 18. Out-of-control average run length (for an in-control 
A.R.L. of 400) as a function of the inner control 
limit, y, and the middle control limit, x 

Table 15. Control limits for the { Rl[l,l,w,=], 
R2[2,3,x,®], R3[3,4,y,®] } family of 
control schemes resulting in an in-control 
A.R.L. of 400. Control limits are given 
in standard units 

1 Control Limits 1 Out-of- 1 
1 y X w 1 Control ARL 1 

1 1.420 2.529 4.348 ! 18.514 1 
1 1.430 2.445 4.218 1 18.385 1 
1 1.435 2.409 4.167 1 18.340 

1 
1 1.440 2.378 4.125 1 18.308 

1 1,445 2,351 4,091 1 18.286 i 
1 1.450 2.327 4.062 i 18.275 1 

1 1.455 2,306 4.039 1 (18.273) 1 

1 1.460 2,288 4.020 1 18.280 1 

1 1.465 2.273 4.004 1 18.295 1 

1 1.470 2.260 3.990 1 18.316 1 1 1.475 2.249 3.978 1 18.344 1 1 1.480 2.240 3,966 1 18.376 1 1 1.490 2.224 3.937 1 18.454 1 1 1.500 2.212 3.897 1 18,542 1 



www.manaraa.com

101 

this solution is 

w=4,039, x= 2 .306, y=1.455, and ARL(4.039, 2.306, 1.455; l)=18.273. 

Table 16 shows the optimal control-limit combinations for different 

values of the in-control average run length and the corresponding 

expected out-of-control run lengths. These results are also displayed 

in figures 19, 20, 21, and 22. 

Table 16. Optimal control limits for the { Rl[l,l,w,=], 
R2[2,3,x,®], R3[3,4,y,œ] } family 
of control schemes. Values of control limits 
are given in standard units 

+ + + 

I Average Run Length | | 
+ + Optimal Control Limits | 

In Out of 1 y X w 
Control Control 1 

100.0 9.9 1 1.198 1.985 3.336 
125.0 10.8 1.239 2.039 3.453 
150.0 11.7 1 1.272 2.082 3.550 
175.0 12.6 1 1.301 2.119 3.631 
200.0 13.3 1 1.325 2.152 3.701 
225.0 14.1 1 1.347 2.180 3.764 
250.0 14.8 1 1.366 2.205 3.819 
275.0 15.4 1 1.384 2.228 3.869 
300.0 16.0 1 1.400 2.249 3.915 
325.0 16.6 1 1.414 2.268 3.958 
350.0 17.2 1 1.428 2.286 3.997 
375.0 17.7 1 1.441 2.303 4.033 
400.0 18.3 1 1.453 2.318 4.067 
425.0 18.8 1 1.464 2.333 4.099 
450.0 19.3 1 1.474 2.347 4.129 
475.0 19.8 1 1.484 2.360 4.158 
500.0 20.3 1 1.494 2.372 4.185 
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0 200 400 600 

In-Control Average Run Length 

Figure 19. Optimal inner limits, y, for the { Rl[l,l,w,®], 
R2[2,3,x,=], R3[3,4,y,®j } family of control schemes. 
Values of control limits are given in standard units 

0 200 400 600 

In-Control Average Run Length 

Figure 20. Optimal middle limits, x, for the { Rl[l,l,w,®], 
R2[2,3,x,®], R3[3,4,y,®] } family of control schemes-
Values of control limits are given in standard units 
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4.20 

In-Control Average Run Length 

Figure 21. Optimal outer limits, w, for the { Rl[l,l,w,®], 
R2[2,3,x,=], R3[3,4,y,®] } family of control schemes. 
Values of control limits are given in standard units 

21.0 

9.0 H 

0 200 400 600 

In-Control Average Run Length 

Figure 22. Optimal out-of-controi A.R.L. for the { R1[1,1,w,®], 
R2[2,3,x,®], R3[3,4,y,o=] } family of control schemes 
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Table 17 shows the A.R.L. curves, as functions of the shift in the 

process mean (in standard units), corresponding to the optimal control 

limits for in-control average run lengths of 100, 200, 500. These 

results were generated using the program P3A2311B.BAS listed in 

Appendix E. 

Table 17. Optimal average run lengths for the 
{ Rl[l,l,w,œ], R2[2,3,x,œ], R3[3,4,y,m] } family 
of control schemes. Values of control limits and 
process mean are given in standard units 

1 Process | y = 1.20 1.33 1.40 1.45 1.49 
1 Mean | X = 1.99 2.15 2.25 2.32 2.37 

1 1 w = 3.34 3.70 3.92 4.07 4.19 

1 M 1 Average Run Length 

1 0.00 1 100.0 200.0 300.0 400.0 500.0 
1 0.05 1 98.0 195.1 291.7 388.1 484.4 
i 0.10 1 92.6 181.5 269.2 356.2 442.6 
1 0.15 i 84.7 162.5 238.1 312.4 385.9 
1 0.20 1 75.6 141.4 204.3 265.5 325.6 
1 0.25 66.3 120.8 171.9 221.2 269.3 
1 0.30 1 57.6 102.1 143.2 182.5 220.6 

0.35 1 49.7 85.9 118.8 150.0 180.0 
1 0.40 1 42.9 72.2 98.6 123.3 147.0 
1 0.45 1 37.0 60.9 82.1 101.7 120.4 
1 0.50 1 32.0 51.5 68.6 84.3 99,2 
1 0.60 1 24.3 37.5 48.8 59.0 68,5 
1 0.70 1 18.8 28.0 35.5 42.3 48.6 
1 0.80 1 14.8 21.3 26.6 31.2 35.4 
1 0.90 1 12.0 16.7 20.4 23.6 26.5 
1 1.00 9.9 13.3 16.0 18.3 20.3 
1 1.25 1 6.6 8.3 9.6 10.7 11.6 
i 1.50 1 4.8 5.8 6.5 7.0 7.5 
1 1.75 ! 3.7 4.4 4.8 5.1 5.4 

2.00 1 3.1 3.6 3.8 4.0 4.2 
1 2.25 1 2.6 3.0 3.2 3.3 3.4 
1 2.50 1 2.3 2.6 2.8 2.9 2.9 
1 2.75 1 2.0 2.3 2.5 2.5 2.6 
1 3.00 1 1.8 2.1 2.2 2.3 2.3 
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Table 18 shows the ratios of the optimal A.R.L.s corresponding to 

the control scheme { R2[2,3;X,=], R3[3,4,y,<»] } to those correspond­

ing to the control scheme { Rl[l,l,w,®], R2[2,3,x,®], R3[3,4,y,=] } 

as functions of the shift in the process mean. These ratios show that 

very little improvement in the A.R.L. is attained by the addition of 

the control rule Rl[l,l,w,®i to the control scheme { R2[2,3,x,®], 

R3[3,4,y,®] } if the in-control A.R.L. is large (greater than 300) or 

the shift in the process mean is small or moderate (less than 2 

standard units). Consequently, the control rule Rl[l,l,w,®] should be 

used only if economical considerations dictate that small or moderate 

shifts in the process mean are unimportant and that a relatively small 

in-control A.R.L. should be used. 

Table 18. Ratios of average run lengths: optimal control 
scheme { R2[2,3,x,œ], R3[3,4,y,®] } to optimal 
control scheme { Rl[l,l,w,<»], R2[2,3,x, = ], 
R3[3,4,y,®] } 

+ + + 

Process | In - Control Average Run Length 
Mean | 100 200 300 400 500 

M 1 R A T  I 0 S 

0.00 1 1.00 1.00 1.00 1.00 1.00 
0.20 1 1.00 1.00 1.00 1.00 1.00 
0.40 1 1.00 1.00 1.00 1.00 1.00 
0.60 1 1.00 1.00 1.00 1.00 1.00 
0.80 1 1.00 1.00 1.00 1.00 1.00 
1.00 1 1.01 1.00 1.01 1.00 1.00 
1.25 1 1.02 1.01 1.01 1.00 1.00 
1.50 1 1.05 1.01 1.01 1.01 1.01 
1.75 1 1.04 1.02 1.01 1.01 1.01 
2.00 1 1.07 1.04 1.02 1.02 1.02 
2.25 1 1.11 1.06 1.05 1.05 1.05 
2.50 1 1.14 1.07 1.07 1.05 1.05 
2.75 1 1.19 1.12 1.09 1.07 1.07 
3.00 1 1.28 1.15 1.12 1.10 1.09 

+ + + 
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E. Comparison of Two Control Schemes 

This section is devoted to the comparison of an optimal control 

scheme with the control scheme recommended by the Statistical Quality 

Control Handbook (Western Electric Company, 1956) and the evaluation of 

their performances under different out-of-control situations. 

The control scheme suggested by Western Electric is used as a base 

for comparison because it is one of the most widely used and 

recommended control schemes. This control scheme declares the process 

to be out of control if a single sample mean fails above the 3ff limit 

or below the -3CT limit, if two out of three successive sample means 

fall above the 2a limit or below the -2a limit, if four out of five 

successive sample means fall above the la limit or below the -la limit, 

or if eight successive sample means fall above or below the target 

mean. The average run length properties of this control scheme have 

been studied and reported by Champ (1986). He reports an in-control 

A.R.L. of 91.75 for this scheme. 

The Western Electric control scheme is compared to the member of 

the family of control schemes { Rl[l,l,w, = ], R2[2,3,x,<»], 

R3[3,4,y,®] } with the same in-control A.R.L. and that minimizes the 

out-of-control A.R.L. for a shift in the process mean of one standard 

deviation; this control scheme is 

{ R1[1,1,3.216,=], R2[2,3,1.962,=], R3[3,4,1.181,»] } 

Table 19 shows the A.R.L. as a function of the shift in the process 

mean for these two control schemes. Notice that, although one of the 
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schemes requires only the last four samples to decide whether the 

process is under control or not and the other scheme requires eight 

samples to make the same decision, the difference between the A.R.L. of 

these two control schemes is very small. The Western Electric control 

scheme. Sa, is slightly superior to our optimized control scheme, S", 

for small shifts in the process mean; however, the difference 

practically vanishes for moderate and large shifts in the process mean. 

Table 19. Average run length as a function 
of the shift in the process mean 
for the control schemes Sa = 
{ Rl[l,l,3,®], R2[2,3,2,=], 
R3[4,5,l,®], RA[8,8,0,=] } and 

= { R1 [1,1,3.216, = ], R2[2,3, 
1.962,=], R3[3,4,1.181,®] } 

1 Mean Shift 
1 (in std. units) 

Average 
Sa 

Run Length 
S* 

1 
1 

1 0.00 91.7 91.7 1 
1 0.05 90.3 90.3 1 
1 0.10 84.3 84.5 1 
1 0.15 75.9 77.5 1 
1 0.20 66.8 69.4 1 
1 0.25 57.9 61.2 1 
1 0.30 49.8 53.3 
1 0.35 42.7 46.2 i 
1 0.40 36.6 40.0 j 
1 0.45 31.5 34.6 i 
1 0.50 27.3 30.0 1 
i 0.60 20.9 22.9 
1 0.70 16.4 17.8 1 
1 0.80 13.2 14.2 1 
1 0.90 10.9 11.5 1 
1 1.00 9.2 9.5 i 
1 1.25 6.5 6.3 1 
1 1.50 4.9 4.7 1 
1 1.75 3.8 3.7 1 
1 2.00 3.1 3.0 1 
1 2.25 2.6 2.6 1 
1 2.50 2.2 2.2 1 
1 2.75 1.9 2.0 1 
1 3.00 1.7 1.8 1 
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The other question to be addressed in this section is: "How do 

these schemes compare to each other when the out-of-controi situation 

does not correspond to a simple shift in the process mean?" To answer 

this question different alternative situations are considered: The 

process changes in such way that the continuous random variables X[i], 

i = 1,2,3,... that are being monitored and that measure the quality of 

the production process at time i are no longer normally distributed, 

but 

1. they are independent and identically distributed according to a 

double exponential distribution with probability density function 

(p.d.f.) 

f(x) = ( X / 2 )  E x p (  - X  I  X - M I  ), -œ < X < +œ, 

and cumulative distribution function (c.d.f) 

0.50 Exp( X ( X - M )  ) ,  X. < ^ 
F ( X )  =  

1 -  0.50 Exp(-X(x-/ i ) ) ,  X  >  M  

2. they are independent and identically distributed according to a 

Cauchy distribution with p.d.f. 

2  - 1  
f(x) = { T tI  1  +  ( (x - IJ.)/o ) ] }, -œ < X < 

and c.d.f. 

1 X - u 1 
F(X) Arctan + , -» < x < +®. 

IT a 2 

3. they are the result of a mixed autoregressive-moving average 

process of first order, that is 

X[n] - e[n] + g e[n-l] - a  X[n-1], n = 1,2,3,... 
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where a  and g are constants and the e[i]'s are assumed to be 

independent and identically and normally distributed with mean zero 

and standard deviation a. 

The average run lengths for these out-of-control situations are 

estimated using Monte Carlo simulation. To carry out the simulation it 

is necessary to select particular values for the parameters of each of 

the three random processes described above. These values are selected 

such that the departure from the standard normal situation is not so 

obvious that any reasonable control scheme would detect the departure 

in a very few samples. For the double exponential case, two sets of 

parameter values are used: M = 1, X = /2, and u. = 2 and X = /2 

(in both cases the value of X is selected such that the variance is 

equal to 1), For the Cauchy distribution also two sets of parameter 

values are used: M = 0, CT = 1 (standard Cauchy) and n = 0,50 , o = 

0,5011 (this value for the scale parameter was selected because it 

minimizes the maximum absolute deviation between the standard normal 

c.d,f and a Cauchy c,d.f, with M = 0), 

The mixed autoregressive-moving average (A , R , M . A.) process is used 

as an alternative model because it allows us to model situations in 

which there is a correlation between the random variables X[n] and 

X[n-l], n = 2,3,4 It can be shown that E( X[n] ) = 0 and that if 

the parameter a in the equation 

X[n] = e[n] + jî e[n-l] - a X[n-1], n = 1,2,3,,.. 
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is selected such that -1 < a < 1 then the A.R.M.A. model is stable 

and hence the variance of X[n], Var( X[n] ), is finite and constant; 

moreover, the autocovariance, Cov( X[n], X[n-l] ), is independent of 

time n and the process is stationary, in other words, the joint 

distribution of any sequence of observations is the same no matter 

where in time the sequence is started (E. A. Robinson and M. T. 

Silvia, 1979). Given the values of a, ^ and a, the variance and the 

autocovariance can be computed as 

2 2 2 
a  ( l + l 5 ) - 2 a p a  

Var( X[n] ) = 
( 1  +  a )  ( 1  -  a )  

and 
2 2 2 2 

/ 3 a ( l + a ) - a a (  1  +  / 3  )  
Cov( X[n], X[n-1] ) = 

( l + a) (l -  a) 

In this study, the values of these parameters are selected such that 

Var( X[n] ) = 1. Three different sets of values for a, <3, and a are 

used in the simulation of the A.R.M.A. process; the first set, 

a = 0.316, a = -0.938, and j3 = 0.100, gives a high correlation 

between X[n] and X[n-1}, 0.95, the second set of values, a = -0.515, 

j2 = 1.20, and a = 0.447, gives a correlation between X[n] and X[n-1] 

of 0.75, and the third set, a = -0.024, P = 1.20, and a = 0.632, 

gives a low correlation between X[n] and X[n-1], 0.50. 

To carry out the simulations to estimate the average run lengths of 

the control schemes Sa = { Rl[l,l,3,=], R2[2,3,2,®], R3[4,5,l,=], 

R4[8,8,0, = ] } and S* = { R1[1,1,3.216,»], R2[2,3,1.962,»], 

R3[3,4,1.181,®] } under the different out-of-control situations 
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described above, six computer programs are used: programs DBLEXPl.BAS 

and DBLEXP.BAS simulate the control schemes. Sa and S*, respectively, 

when the process distribution has changed to a double exponential 

distribution, programs CAUCHYl.BAS and CAUCHY2.BAS simulate the control 

schemes, Sa and S-, respectively, when the process distribution has 

changed to a Cauchy distribution, and programs ARMAI.BAS and ARMA2,BAS 

simulate the control schemes, Sa and S-, respectively, when the process 

behaves according to an A.R.M.A. process of first order. All these 

programs share a common set of subroutines (SIM.INC) designed to 

generate random numbers according to different probability 

distributions, to check the different control rules after each sample 

is generated, and to collect and compute the basic statistics necessary 

for the comparison of the control schemes. Program listings are given 

in Appendix F. 

A summary of the results produced by these programs is presented in 

Tables 20, 21, and 22. There is little difference in the average run 

Table 20. Control-scheme comparisons: Double exponential distribution 

H h 

I Distribution Double exponential | 
4 H 
I Parameters | n = 1.000 X = 1.4142 | M = 2.000 X = 1.4142 | 
4 1 k f-

I Cntr.Scheme | Sa | S'- | Sa | S'- | 
4 4 H 4 h + 

I No. of runs | 1500 | 1500 | 1500 | 1500 | 
H f 1- 4 1 f-

I A.R.L. I 8.795 | 9.279 | 3.183 | 3.157 | 
+ + + + + + 

I Std. dev. I 5.527 | 7.628 | 1.509 | 1.287 | 
+ — — — — — — — — — — — — — — — —H — — — — — — — — — — — —— + — — — — — — — — — — ——_ — — — + 

I 95% C.I. 1(8.52, 9.07) |(8.89, 9.67) |(3.11, 3.26) |(3.09, 3.22) | 
+ + 
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lengths of the control schemes when the distribution of the random 

variable being controlled changes to a double exponential distribution 

(with variance 1); this difference seems to become even smaller as the 

mean of the distribution, n, increases. 

Table 21. Control-scheme comparisons: Cauchy distribution 

+ + 

I Distribution Cauchy | 
+ + 
I Parameters ! a = 0.000 a = 1.0000 | M = 0.500 a = 0.5011 | 
+ -T + + 

I Cntr.Scheme ( Sa | S" | Sa | S" | 
H 1 1 1 4 1-

I No. of runs | 1500 | 1500 | 1500 | 1500 | 
+ + + + + + 

I A.R.L. I 4.711 I 4.812 | 7.698 | 8.764 | 
+ + + + + + 

I Std. dev. I 3.983 | 4.293 | 6.218 | 8.865 | 
-f — — — — — — — — — — — + — — — — — — — — — — — — — + — — — — — — — — — — _ I— — — —h 

I 95% C.I. 1(4,51, 4.91) 1(4,60, 5.03) |(7,38, 8,01) |(8,32, 9.21) | 
+ + 

The average run lengths of the control schemes Sa and S" are 

practically equal, about 4,7, (see Table 21) when the observations come 

from a standard Cauchy distribution; however, for the non-standard 

Cauchy distribution, the more complex control scheme. Sa, detects the 

out-of-control situation faster. 

The more complex control scheme, Sa, is clearly superior to the 

control scheme S'- in detecting observations that are correlated (as in 

the A.R.M.A. process). Sa detects the departure from normality in 

about 20% fewer samples than S*. 

Finally, we do not want to over emphasize the numerical results of 

these simulations; however, we want to stress the fact that control 
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not perform as well in others. Consequently, we recommend the use of 

the "optimized" control schemes only in those cases in which the sampl 

size is large enough so we can count on the normality assumption. 
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Table 22. Control-scheme comparisons: A.R.M.A. process 

4 

I Mixed autoregressive-moving average process 
4 

I I a = -0.938 I a = -0.515 | a = -0.024 
! Parameters j p  =  0.100 | g = 1,200 | ;3 = 1.200 
I I a = 0,316 I ff = 0.477 | a = 0.632 
+ + 

I Cntr.Scheme j Sa | S" | Sa | S- | Sa | S'- | 
4 f-

I No. of runs | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 | 
+ 1-

I A.R.L. ! 12.381 I 15.580 | 18.192 | 24.238 | 32.684 | 38.710 | 
4 i-

I Std. dev. I 6.348 | 13.413 | 13.830 | 21.950 | 29.045 | 34.190 | 
4 1-
I 95% conf. I (12.0, | (14.9, | (17.5, | (23.1, | (31.2, | (37,0, | 
1 interval j 12.7) | 16.3) | 18.9) | 25.3) I 34.2) | 40.4) | 
+ 4-
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V. CONCLUSIONS AND RECOMMENDATIONS 

In this study, a new method for designing control schemes is 

presented and discussed. This method is based entirely on the average 

run length properties of the control schemes and it seeks the 

minimization of the out-of-control average run length (by the 

appropriate selection of the control limits) for a given in-control 

average run length. This method can be used in conjunction with 

economical-design methods for control charts or as an alternative to 

these methods when estimates of cost parameters are not available. 

This research shows that a Markov chain approach can be used to 

obtain exact run length properties of control schemes and, combined 

with appropriate optimization techniques, it can be used to find 

optimal control limits, as well. Comparisons of control schemes with 

optimal control limits to other control schemes having the same on-

target A.R.L. indicate that up to a 50% reduction in the number of 

samples required to detect a moderate shift in the process mean is 

possible; consequently, the used of the "optimized" control schemes is 

strongly recommended. 

In this research four different families of control schemes were 

carefully examined: 

F1 = { Rl[l,l, w,=], R2[2,3, X,»] }, 

F2 = { Rl[l,l, w,®], R3[3,4, y,=] }, 

F3 = { R2[2,3, x,=], R3[3,4, y , = ]  }, and 

F4 = { Rl[l,l, w,»], R2[2,3, x,=], R3[3,4, y,=] }. 
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Let Si", i = 1,2,3,4, denote the best control scheme of the family Fi, 

i = 1,2,3,4, for a given in-control A.R.L. This study shows that 

control scheme S2* detects small shifts in the process mean faster than 

the corresponding scheme Si- with the same on-target A.R.L.; however, 

scheme 51=' detects large shifts in the mean faster than S2" if the 

corresponding in-control A.R.L. is relatively small (less than 200). 

The contrast of schemes S2" and S3* reveals that, for small or 

moderate shifts in the process mean, the control scheme S3" is only 

slightly better than the corresponding control scheme S2" with the same 

in-control A.R.L.; consequently, we recommend using the more complex 

scheme, S3", only if one is specially interested in decreasing the 

number of samples necessary to detect a large shift in the mean. 

The comparison of control schemes S3" and S4" shows that S4* is 

significantly better than the corresponding control scheme S3" (with 

the same on-target A.R.L.) only for large shifts in the process mean 

and small and moderate in-control average run lengths. 

These results suggest that only a small reduction in the out-of-

control A.R.L. is possible by the inclusion of more control rules into 

a given control scheme. This is confirmed by the fact that the control 

schemes { Rl[l,l, 3,®], R2[2,3, 2,»], R3[4,5, 1,=], R4[l,l, 3,»] } 

and { Rl[l,l, 3.216,=], R2[2,3, 1.962,®], R3[3,4, 1.181,®] }, for 

all practical purposes, have the same A.R.L. curve. However, 

simulation results suggest that complex control schemes, as the one 

recommended by the Western Electric Company, require, in average, fewer 
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samples to detect correlations in the observations and changes in the 

distribution of the random variable being monitored. 

Finally, we would like to point out that the methods of analysis 

and design of control charts presented in this study are not limited to 

the X-bar chart or to the rules that were used in the study. These 

methods can be applied to other control charts such as the R chart, 

np chart, c chart and chart; this is an area that definitely 

deserves further study. 



www.manaraa.com

117 

VI. REFERENCES 

Aroian, L. A. and Levene, H. "The Effectiveness of Quality 
Control Charts." Journal of the American Statistical 
Association. 44, No. 252 (1950): 520-529. 

Baker, K. R. "Two Process Models in the Economic Design of an 
X-bar Chart." AIIE Transactions. 3, No. 4 (1971): 257-263. 

Barish N. N. and Mauser N. "Economic Design for Control 
Decisions." Journal of Industrial Engineering. 14, No. 3 
(1963): 125-134. 

Bather, J. A. "Control Charts and the Minimization of Costs." 
Journal of the Roval Statistical Society. B. 25, No. 1 
(1963): 49-80. 

Burr, I. W. Engineering Statistics and Quality Control. New 
York: McGraw-Hill, 1953. 

Champ, C. W. "Exact Results for Shewhart Control Charts with 
Supplementary Runs Rules." Ph.D. Thesis. University of 
Southwestern Louisiana, Lafayette, Louisiana, 1986. 

Chiu, W. K. "Comments on the Economic Design of X-bar Charts." 
Journal of the American Statistical Association. 68, No. 
344 (1973): 919-921. 

Chiu, W. K. and Cheung, K. C. "An Economic Study of X-bar 
charts with Warning Limits." Journal of Quality Technology. 
9, No. 4 (1977): 166-171. 

Chiu, W. K. and Wetherill, G. B. "A Simplified Scheme for the 
Economic Design of X-bar Charts." Journal of Quality 
Technology. 6, No. 2 (1974): 63-69. 

Cody, W. J. "Rational Chebyshev Approximation for the Error 
Function", Mathematical Computing. 23 (1969): 631-638. 

Cowden, D. J. Statistical Methods in Quality Control. 
Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1957. 

Duncan, A. J. "The Economic Design of X-bar Charts Used to 
Maintain Current Control of a Process." Journal of the American 
Statistical Association. 51, No. 274 (1956): 228-242. 

Duncan, A. J. "The Economic Design of X-bar Charts When There is a 
Multiplicity of Assignable Causes." Journal of the American 
Statistical Association. 66, No. 333 (1971): 107-121. 



www.manaraa.com

118 

Duncan, A. J. Quality Control and Industrial Statistics. Homewood, 
Illinois: Richard D. Irwin, Inc. 1974. 

Feigenbaum, A. V. Total Quality Control. New York: McGraw-
Hill, 1961. 

Gibra, I. N. "Economically Optimal Determination of the 
Parameters of X-bar Control Chart." Management Science. 
17, No. 9 (1971): 635-646. 

Gibra, I. N, "Optimal Control of Processes Subject to Linear 
Trends." The Journal of Industrial Engineering. 28, 
No. 1 (1967): 35-41. 

Girshick, M, A. and Rubin, H. "A Bayes Approach to a Quality 
Control Model." Annals of Mathematical Statistics. 23, No. 
23 (1952): 114-125. 

Goel, A. L., Jain, S. C., and Wu, S. M. "An Algorithm for the 
Determination of the Economic Design of X-bar Charts Based on 
Duncan's Model." Journal of the American Statistical 
Association. 62, No. 321 (1968): 304-320. 

Gordon, G. R. and Weindling, J. I. "A Cost Model for Economic 
Design of Warning Limit Control Charts Schemes." AIIE 
Transactions. 7, No. 3 (1975): 319-329. 

Grant, E. L., and Leavenworth, R. S. Statistical Quality 
Control. New York: McGraw-Hill, 1988. 

losifescu, M. Finite Markov Processes and Their Applications. 
New York: John Wiley and Sons, 1980. 

Ishikawa, K. Guide to Quality Control. Tokyo: Asian Productivity 
Organization, 1976. 

Johnson, L. W. and Dean Riess, R. Numerical Analysis. 
Philippines: Addison-Wesley Publishing Company, Inc., 1982. 

Juran, J. M., Gryna, F. M., Jr., and Bingham, R. S., Jr. 
Quality Control Handbook. New York: McGraw-Hill, 1974. 

Kennedy, W. J. and Gentle, J. E. Statistical Computing. New 
York: Marcel Dekker, Inc., 1980. 

Knappenberger, H. A. and Grandage, A. H. E. "Minimum cost Quality 
Control Tests." AIIE transactions. 1 No. 1 (1969): 24-32. 

Lorenzen, T. J. and Vance, L. C. "The Economic Design of Control 
Charts: A Unified Approach." Technometrics. 28, No. 1 (1986): 3-10. 



www.manaraa.com

119 

Montgomery, D. C. "Economic Design of an X-bar Control Chart." 
Journal of Quality Technology. 14, No.l (1982): 40-43. 

Moore, P. G. "Some Properties of Runs in Quality Control 
Procedures." Biometrica. 45 (1958): 89-95. 

Page, E. S. "Control Charts with Warning Lines." Biometrica. 
Vol 42 (1955): 100-115. 

Press, W. H. , Flannery, B. P., Teukolsky, S. A., and Vetterl-
ing, M. T. Numerical Recipes. The Art of Scientific 
Computing. New York: Cambridge University Press, 1986. 

Robinson, E. A. and Silyia, M. T. Digital Foundations of Time 
Series Analysis.1. The Box-Jenkins Approach. San Francisco: 
Holden-Day Inc, 1979. 

Ross, S. M. "Quality Control Under Markovian Deterioration." 
Management Science. 17, No. 5 (1971): 587-596. 

Savage, I. R. "Surveillance Problems." Naval Research Logistic 
Quarterly. 9, No, 2 (1962): 187-209. 

Taylor, H. M. "Markovian Sequential Replacement Processes." 
Annals of Mathematical Statistics. 36 (1965): 187-209. 

Weiler, G. H. "The Use of Runs to Control the Mean in Quality 
Control." Journal of the American Statistical Association. 
48, No. 6 (1953): 816-825. 

Weiler, G. H. "A New Type of Control Chart Limits for Means, 
Ranges, and Sequential Runs." Journal of the American 
Statistical Association. 49, No. 266 (1954): 298-314. 

Weindling, J. I. Statistical Properties of a General Class of 
Control Charts Treated as a Markov Process. Ph.D. Dissertation, 
Columbia University, New York, 1967. 

Weindling, J. I., Littauer, S. B., and Tiago de Oliveira, J. 
"Mean Action Time of the X-bar Control Chart with Warning 
Limits." Journal of Quality Technology. 2, No. 2, 
(1970): 79-85. 

Western Electric Company. Statistical Quality Control Hand­
book. New York: Western Electric Company Inc., 1956. 

Wetherill, G. B. Sampling Inspection and Quality Control. 
London: Methuen and Company, Ltd., 1977. 



www.manaraa.com

120 

Wheeler, D. J. "Detecting a Shift in Process Average: Tables 
the Power Function for X-bar Charts." Journal of Quality 
Technology. 15, No. 4 (1983): 155-169. 

White C. C. "A Markov Quality Control Process Subject to 
Partial Observation." Management Science. 23, No. 8 
(1974): 843-852. 



www.manaraa.com

121 

VII. ACKNOWLEDGEMENTS 

The research recorded in this dissertation was done through a close 

working relationship with ray major professors. Dr. Herbert T. David and 

Dr. Howard D. Meeks. I would like to express my sincere gratitude for 

their teachings, strong support and encouragement. Special thanks to 

Dr. H. T. David for his continuous guidance and valuable suggestions, 

to Dr. Stephen B, Vardeman for introducing me to the area of Quality 

Control and arising my interest for the study of control charts, and 

to Dr, Richard A. Groeneveld for introducing me to the subject of 

Markov processes. 

Thanks to each member of my committee: Dr. John C. Even, 

Dr. Richard A. Groeneveld, and Dr. Vincent A. Sposito for their 

teachings, advices, and support during my years at Iowa State 

University. 

Finally, thanks to my mother and my son for their endless under­

standing and encouragement. 



www.manaraa.com

122-123 

VIII. APPENDIX A: PROGRAMS P2311A.BAS AND P2311B.BAS 



www.manaraa.com

124 

Noel Artiles. September 1988. 
File: P2311A.BAS 

AVERAGE-RUN-LENGTH CALCULATIONS 

RULES CONSIDERED IN THIS PROGRAM: 

Stop if 2/3 points fall in (-oo, -b), or 
stop if 2/3 points fall in ( b, +oo), or 
stop if l/l point fall in (-oo.-x) U (x, +oo). 

This program computes values for b and x that will result in a 
given in-control ARL, ARLO, and that minimize the out-of-control 
average run length (process mean =1). 

CLS 
DEFINT i-n 
DEFDBL a-h,o-z 
DEF FNfmax(x,y) 
DEF FNfmin(x,y) 

(x+y+abs(x-y))/2 
(x+y-abs(x-y))/2 

Define integer variables, 
Define double prec. vars, 
Define Max{} function 
Definr Mini} function 

n = 7 : 
n.max=50: 
x.tol=l.OD-10 
CALL init.normal 
DIM a(0:7, 0:7) 
DIM clim(3), arlout(3) 

Size of matrix (l-Q) 
Maximum number of iterations for secant method 
Tolerance in x.limit for secant method 
Initialize constants for Normal,prob. routine 
Matrix a contains (l-Q) matrix 

formatlS = "B = //.//#//# X = //.//## ARLzero = 
format2$ = formatl$+" ARLone = ##//.#//##" 

blimit = 1.50 
OPEN "P2311X1 .PRN" FOR OUTPUT AS //l 

Optimize for ARLo = 100, 125, 500 

FOR iarl = 100 TO 500 STEP 25 
arlO = iarl 
y.tol = arl0'-(l .OE-8) 
pmean = 1.0 
PRINT USING arlO = arlO 

' Define an initial set of values for the 
' inner limit (blimit) 
FOR k = 1 TO 3 
clim(k) = blimit 
arlout(k) = FNflagrange (blimit, pmean, arlO ) 
blimit = blimit + 0.10 

NEXT k 
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icounter = 1 
vlen = ABS( cliin(3)-clira(l ) ) 
WHILE (icounter < 500 AND vlen > .0005 ) 
CALL interp ( climO, arloutO, flag, blimit) 
ysmall = arlout(l); ismall = 1 
FOR i = 2 TO 3 

IF ysmall > arlout(i) THEN 
ysmall = ariout(i) 
ismall = i 

END IF 
NEXT i 
vlen = ABS( clim(3)-clim(l) ) 
icounter = icounter + 1 

IF flag = 1 THEN ' If flag=l the function is not convex 
' in current interval. 

PRINT 
PRINT "Warning: Function is not convex in current interval." 
PRINT " Rerun the program with different starting points. 
PRINT 
STOP 

ELSE If function is convex in current interval, 
replace worst control limit by the approximation 
computed by subroutine "interp". 

aril = FNflagrange (blimit, pmean, arlO ) 
arlworst = arlout(l) 
iworst = 1 
FOR i = 2 TO 3 

IF arlworst < arlout(i) THEN 
arlworst = arlout(i) 
iworst = i 

END IF 
NEXT i 
clim(iworst) = blimit 
arlout(iworst) = aril 

END IF 
WEND 

Best inner control limit has been found. 
Compute corresponding outer control limit. 

bestarl = arlout(l): ibest = 1 
FOR i = 2 TO 3 

IF bestarl > arlout(i) THEN 
bestarl = arlout(i) 
ibest = i 

END IF 
NEXT i 
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biimit = cliin(ibest) 
xiow = FNfmaxCl.S, biimit) 
xl = xiow + ABS(4-xiow)/4 
X2 = 4.00 

CALL secant (xl, x2, n.max, x.tol, y.toi, ariO, ari, xlimit ) 
PRINT #1, USING format2$; biimit, xlimit, ari, arlout(ibest) 
PRINT USING format2$; biimit, xlimit, ari, arlout(ibest) 
PRINT 

NEXT iarl 
CLOSE #1 
PRINT "Done ! !" 
END 
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SUB interp ( x(l), y(l), flag, xvalue ) 

This function uses quadratic interpolation to approximate the minimum 
' of a function. If the set of points (xl,yl), (x2,y2), and (x3, y3) 
' does not fall on a convex function the value of flag is set to 1, 
' otherwise it is set to zero. 

LOCAL d32, dl3, d21, rnum, rden, xsmall, Ismail, yvalue, i, j 

FOR i = 1 TO 3 
xsmall = x(i) 
ismall = i 
FOR j = i TO 3 

IF xsmall > x( j) THEN 
xsmall = x(j) 
ismall = j 

END IF 
NEXT j 
SWAP x(i),x(ismall) 
SWAP y(i),y(ismall) 

NEXT i 
d32 = x(3)-x(2) 
dl3 = x(l)-x(3) 
d21 = x(2)-x(l) 
yvalue = y(l) + d21*( y(l)-y(3) )/dl3 
IF yvalue > y(2) THEN flag = 0 ELSE flag = 1 
rnum = y( 1 )*d32*(x(3) +x(2)) +y(2)'-d 13=-(x( 1 )+x(3) )+y(3)*d21*(x(2)+x(l) ) 
rden = y(l)*d32 + y(2)*dl3 + y(3)*d21 
xvalue = rnum/rden/2 

END SUB 'interp 
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DEF FNflagrange (blimit, pmean, arlO) 

' Given the value of the inner control limit, blimit, this function 
computes the value of the outer control limit that will result in-

' control ARL of ARLo and computes and returns the value of ARL at 
' pmean. If a value for the outer limit cannot be found the function 
' adds a penalty to the value of the ARL at pmean, 

SHARED n.max, x.tol, y.tol 
LOCAL xlow, xl, x2, arlnull, arl 
xlow = FNfmaxd.S, blimit) 
xl = xlow + ABS(3-XL0W)/A 
X2 = 3,00 

CALL secant (xl, x2, n,max, x.tol, y.tol, arlO, arlnull, xlimit ) 

CALL init,matrix (blimit, xlimit, pmean) ' Initialize (I-Q) 
CALL arl( aO, n, arl) ' Compute ARL for pmean 
IF ABS(arlnull-arlO)< 10*y.tol THEN 

FN flagrange = arl 
ELSE 

FN flagrange = arl + ABS(arlnull-arlO) 
END IF 

END DEF 'flagrange 
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SUB secant ( xl, x2, n.max, x.tol, y.tol, ariO, arl, xlimit ) 

Secant Method Routine 

Input: starting points; 
maximum number of iterations 
target average run length: 
tolerances : 
routine to initialize (l-Q): 
routine to compute ARL: 

xl and x2 
n.max 
arlO (for pmean=0) 
x.tol, y.tol 
init.matrix 
arl ( , , ) 

Output: xlimit, and corresponding ARL, arl. 

SHARED A(), n, blimit, format3$ 
LOCAL fl, f2, f3, x3, kl, psec, 
zero = le-15 

CALL init.matrix (blimit, xl, 0) 
CALL arl( A(), n, arl) 
fl=arl-arlO 
CALL init.matrix (blimit, x2, 0) 
CALL ari( A(), n, arl) 
f2=arl-arl0 
IF ABS(f2)>ABS(fl) THEN 

SWAP xl,x2 
SWAP fl,f2 

END IF 

qsec, zero 

Compute ARL for xl 

Compute ARL for x2 

FOR k! = 1 TO n.max 
IF ABS(f2)<y.toi THEN 

xlimit=x2 
arl=f2+ar10 
EXIT SUB 

END IF 
s = f2/fl 
psec = (xl-x2)"S 
qsec = 1-s: 

IF ABS(qsec) > zero THEN 
x3 = x2 -psec/qsec 
IF x3>6,0 THEN 
IF x3<blimit THEN 
IF ABS(x2-x3)<x.tol*ABS(x2) THEN 

xlimit = x2 
arl = f2 +arlO 
EXIT SUB 

END IF 
CALL init.matrix (blimit, x3, 0) 
CALL arl( A(), n, arl) 
f3=arl-arlO 

x3=6.0 
x3=blimit 

Compute ARL for x3 
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IF ABS(f3) > ABS(f2) THEN 
xl=x3: fl=f3 

ELSE 
xl=x2: fl=f2 
x2=x3: f2=f3 

END IF 
END IF 

NEXT k! 
PRINT "No convergence after";k!;" iterations" 

END SUB ' secant 
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SUB arl ( array(2), n, arl.value ) 

' This routine computes the average run length given the array (I~Q) 
' Input: square array "array( , )" containing (I-Q) 
' array size, n 
' Output: average run length, arl.value 
' lower triangular array equivalent to "array(,)" 

LOCAL zero, irow, index, big, nrow, jcol, fctr, frmtS 
zero = lE-10 
frint$ = "Largest possible pivot element //.//#//### in row //#//" 

FOE irow = 1 TO N 
array(irow,0) = 1 

NEXT irow 

FOR irow = N TO 1 STEP -1 
index = 1 
big = ABS(array(index,irow)) 
FOR nrow = 2 TO irow 

IF big < ABS(array(nrow,irow)) THEN 
big = ABS(array(nrow,irow)) 
index = nrow 

END IF 
NEXT nrow 
IF ABS(big) <= zero THEN 

PRINT 
PRINT "Error in SUB arl Pivot element is zero !!" 
PRINT USING frmt$; big, index 
STOP 

END IF 
FOR jcol = 0 TO irow 

SWAP arrayCindex,jcol), arrayCirow,jcol) 
NEXT jcol 
FOR jcol = 0 TO irow-1 

arrayCirow,jcol) = array(irow,jcol)/array(irow,irow) 
NEXT jcol 
arrayCirow,irow) = 1 
FOR nrow = 1 TO irow-1 
fctr = arrayCnrow,irow) 
IF ABS(fctr) > zero THEN 

FOR jcol = 0 TO irow 
arrayCnrow,jcol) = arrayCnrow,jcol) - fctr*arrayCirow,jcol) 

NEXT jcol 
END IF 

NEXT nrow 
NEXT irow 
arl.value = arrayCl,0) 

END SUB 'arl 
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' Note: File "NORMAL.INC" contains a subroutine to compute cumulative 
' standard normal probabilities. 

$INCLUDE "NORMAL,INC" 

SUB init.matrix (blimit, xiimit, pmean) 

' Initialize A = (I-Q) matrix 

' Input: control limits: 
' process mean: 

' Output: A ( matrix [l-Q] ) 

xiimit, blimit 
pmean 

SHARED AO, n 
LOCAL i, j, nsize. z//. pi//, p2//, p3#. p4//, p5//, p 
LOCAL pa, po, pb 

z// = ( xlimit-pmean ) :  pi// = FNCDFnormal//( z// ) 
z// = ( blimit-pmean ) :  p2// = FNCDFnormal//( z// ) 
z# = ( -blimit-pmean ) :  p3// = FNCDFnormal//( z// ) 
z# = ( -xlimit-pmean ) :  p4// = FNCDFnorma 1#( z// ) 
nsize = n 

FOR i = 1 TO nsize 
FOR j = 1 TO nsize: a(i,j) = 0: 

NEXT i 

a( 1, II
 1 o
 

: a( I .  2)=-pa: a (  1, 3) = -pb: 
a( 2, 2)=1: a( *•' , 4)=-po: a( 2, 6) = -pb: 
a( 3, 3)=1: a( 3, 5)=-po: a( 3. 7) = -pa: 
a( 4, 1)=-po: a( 4, 3)=-pb: a( 4, 4) = 1 
a( 5, 1 )=-po: a( 5, 2)=-pa: a( 5, 5) = 1 
a( 6, 5)=-po: a( 6, 6)=1 
a( 7, 4)=-po: a( 7, 7)=1 

pa=pl#-p2// 
po=p2//-p3# 
pb=p3#-p4# 

NEXT j 

END SUB 'init.matrix 

END OF FILE *** END OF FILE END OF FILE *** END OF FILE *** 
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Noel Artiles. September 1988. 
File: P2311B.BAS 

AVERAGE-RUN-LENGTH CALCULATIONS 

RULES CONSIDERED IN THIS PROGRAM: 

Stop if 2/3 points fall in (-oo, -b), or 
stop if 2/3 points fall in ( b, +oo), or 
stop if 1/1 point fall in (-oo,-x) U (x, +oo). 

This program generate the ARL curves corresponding to the optimal 
values of b and x. The in-control ARL considered are 100, 200, 
500 and the process mean varies from 0.00 to 2.00 by 0.10 

CLS 
DEFINT i-n 
DEFDBL a-h,o-z 
DEF FNfmax(x,y) 
DEF FNfmin(x,y) 

(x+y+abs(x-y))/2 
(x+y-abs(x-y))/2 

Define integer variables. 
Define double prec. vars. 
Define Max{} function 
Definr Min{} function 

n = 7: 
n.max=50: 
X.tol=l.OD-10 
CALL init.normal 
DIM a(0:7, 0:7) 
DIM ciim(3), arlout(3) 

Size of matrix (I-Q) 
Maximum number of iterations for secant method 
Tolerance in x.limit for secant method 
Initialize constants for Normal.prob. routine 
Matrix a contains (l-Q) matrix 

OPEN "P2311A1.PRN" FOR OUTPUT AS #1 
FOR iarl = 100 TO 500 STEP 100 

arlO = iarl 
y.tol = arlO*(l.OE-8) 
arlOlog = LOG(arlO) 
blimit = 0.143377 + 0.380772*arl01og - 0.0133218*arl01ogC2 
xlimit = 10 
PRINT #1, USING "Control Limit = //#.###"; blimit 
FOR pmean = 0 to 2.00 step 0.05 

CALL init.matrix (blimit, xlimit, pmean) ' Initialize (I-Q) 
CALL arl( a(), n, arl) 
PRINT #1, USING " #.## 
PRINT 

NEXT pmean 
PRINT #1, 
PRINT 

NEXT iarl 

USING 

' Compute ARL for pmean 
//###. ###" ; pmean, arl 
###.###"; pmean, arl 
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SUB arl ( array(2), n, arl.value ) 

' This routine computes the average run length given the array (i -q)  

' Input: square array "arrayC , )" containing (I-Q) 
' array size, n 
' Output: average run length, arl.value 
' lower triangular array equivalent to "arrayC,)" 

LOCAL zero, irow, index, big, nrow, jcol, fctr, frmt$ 
zero = lE-10 
frmt$ = "Largest possible pivot element #•//#//////#// in row ////#" 

FOR irow = 1 TO N 
arrayCirow,0) = 1 

NEXT irow 

FOR irow = N TO 1 STEP -1 
index = 1 
big = ABS(array(index,irow)) 
FOR nrow = 2 TO irow 

IF big < ABS(array(nrow,irow)) THEN 
big = ABS(array(nrow,irow)) 
index = nrow 

END IF 
NEXT nrow 
IF ABS(big) <= zero THEN 

PRINT 
PRINT "Error in SUB arl [...]: Pivot element is zero ! !" 
PRINT USING frmt$; big, index 
STOP 

END IF 
FOR jcol = 0 TO irow 

SWAP arrayCindex,jcol), arrayCirow,jcol) 
NEXT jcol 
FOR jcol = 0 TO irow-1 

arrayCirow,jcol) = arrayCirow,jcol)/arrayC irow,irow) 
NEXT jcol 
arrayCirow,irow) = 1 
FOR nrow = 1 TO irow-1 
fctr = arrayCnrow,irow) 
IF ABSCfctr) > zero THEN 

FOR jcol = 0 TO irow 
arrayCnrow, jcol) = arrayCnrow,jcol) - fctr*arrayCirow,jcol) 

NEXT jcol 
END IF 

NEXT nrow 
NEXT irow 
arl.value = arrayCl.O) 

END SUB 'arl 



www.manaraa.com

135 

' Note: File "NORMAL.INC" contains a subroutine to compute cumulative 
' standard normal probabilities. 
r 

$INCLUDE "NORMAL.INC" 

SUB init.matrix (blimit, xlimit, pmean) 

' Initialize A = (l-Q) matrix 

' Input: control limits: 
' process mean: 
f 

' Output; A ( matrix [l-Q] ) 

xlimit, blimit 
pmean 

SHARED A(), n 
LOCAL i, j, nsize, z//, pi//, p2̂  , p3//, p4//, p5#, p 
LOCAL pa, po, pb 

z// = ( xiimit-pmean ) :  pi// = FNCDFnormal//( z# ) 
z# = ( blimit-pmean ) :  p2# = FNCDFnormai#( z# ) 
z# = ( -blimit-pmean ) :  p3// = FNCDFnormal#( z// ) 
z# = ( -xlimit-pmean ) :  p4// = FNCDFnormai//( z// ) 
ns ize = n 

FOR i = 1 TO nsize 
FOR j = 1 TO nsize: a(i, j) = 0: 

NEXT i 

a( 1, l)=l-po: a( 1. 2)=-pa: a( 1, 3)=-pb: 
a( 2, 2)=1: a( 2, 4)=-po: a( 2, 6)=-pb: 
a( 3, 3)=1: a( 3, 5)=-po: a( 3, 7)=-pa: 
a( 4, l)=-po: a( 4, 3)=-pb: a( 4, 4)=1 
a( 5, l)=-po: a( 5, 2)=-pa: a( 5, 5)=1 
a( 6, 5)=-po: a( 6, 6)=1 
a( 7, 4)=-po: a( 7, 7)=1 

pa=pl//-p2# 
po=p2//-p3# 
pb=p3#-p4# 

NEXT j 

END SUB 'init.matrix 

*** END OF FILE *** END OF FILE *** END OF FILE *** END OF FILE *** 
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APPENDIX B: PROGRAMS P3411A.BAS AND P3411B.3AS 
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Noel Artiles. September 1988. 
File: P3411A.BAS 

AVERAGE-RUN-LENGTH CALCULATIONS 

RULES CONSIDERED IN THIS PROGRAM: 

Stop if 3/4 points fail in (-oo, -b), or 
stop if 3/4 points fall in ( b, +oo), or 
stop if 1/1 point fall in (-oo,-x) U (x, +oo). 

This program computes values for b and x that will result in a 
given in-control ARL, ARLO, and that minimize the out-of-control 
average run length (process mean =1). 

CLS 
DEFINT i-n 
DEFDBL a-h,Q-z 
DEF FNfmax(x,y) = (x+y+abs(x-y))/2 
DEF FNfmin(x,y) = (x+y-abs(x-y))/2 

Define integer variables. 
Define double prec. vars. 
Define Max{} function 
Definr Mint} function 

n = 25 
n.max=50; 
X.tol=l.OD-10 
CALL init.normal 
DIM a(0:25,0:25) 
DIM clim(3), arlout(3) 

Size of matrix (I-Q) 
Maximum number of iterations for secant method 
Tolerance in x.limit for secant method 
Initialize constants for Normal.prob. routine 
Matrix a contains (l-Q) matrix 

formatlS = "B = //.##// X = //.### ARLzero = ////#.//#//' 
format2$ = formatl$+" ARLone = ###.##//" 

OPEN "P3411X1.PRN" FOR OUTPUT AS #1 

' Optimize for ARLo = 100, 150 500 

FOR iarl = 75 TO 525 STEP 25 
arlO = iarl 
y.tol = arlO*(l.OE-8) 
pmean = 1.00 
PRINT USING " arlO = //#.#"; arlO 

' Define an initial set of values for the 
' inner limit (blimit) 
blimit = 1.06 + .75*arlO/lOOO 
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FOR k = 1 TO 3 
ciim(k) = blirait 
arlout(k) = FNflagrange (blimit, pmean, arlO ) 
blimit = blimit + 0.075 

NEXT k 
icounter = 1 
vlen = ABS( clim(3)-clim(l) ) 
WHILE (icounter < 500 AND vlen > .005 ) 
CALL interp ( climO, arloutO, flag, blimit) 
ysmall = arlout(l): ismall = 1 
FOR i = 2 TO 3 

IF ysmall > arlout(i) THEN 
ysmall = ariout(i) 
ismall = i 

END IF 
NEXT i 
print using "//#,//#////// ysmall, clim(ismall) 
vlen = ABS( clim(3)-clim(l) ) 
icounter = icounter + 1 

IF flag = 1 THEN ' If flag=l the function is not convex 
' in current interval. 

PRINT 
PRINT "Warning: Function is not convex in current interval." 
PRINT " Rerun the program with different starting points." 
PRINT 
STOP 

ELSE ' If function is convex in current interval, 
' replace worst control limit by the approximation 
' computed by subroutine "interp". 

aril = FNflagrange (blimit, pmean, arlO ) 
arlworst = arlout(l) 
iworst = 1 
FOR i = 2 TO 3 

IF arlworst < arlout(i) THEN 
arlworst = arLout(i) 
iworst = i 

END IF 
NEXT i 
clim(iworst) = blimit 
arlout(iworst) = aril 

END IF 
WEND 
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' Best inner control limit has been found. 
' Compute corresponding outer control limit. 

bestarl = arlout(l): ibest = 1 
FOR i = 2 TO 3 

IF bestarl > arlout(i) THEN 
bestarl = arlout(i) 
ibest = i 

END IF 
NEXT i 
blimit = clim(ibest) 
CALL limit.app (arlO, blimit, xl, x2) 
CALL secant (xl, x2, n.max, x.tol, y.tol, arlO, arl, xlimit ) 
PRINT #1, USING format2$; blimit, xlimit, arl, arlout(ibest) 
PRINT USING forinat2$; blimit, xlimit, arl, arlout(ibest) 
PRINT 

NEXT iarl 
CLOSE //I 

PRINT "Done ! !" 
END 
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SUB interp ( x(l), y(l), flag, xvalue ) 

' This function uses quadratic interpolation to approximate the minimum 
' of a function. If the set of points (xl.yl), (x2,y2), and (x3, y3) 
' does not fall on a convex function the value of flag is set to 1, 
' otherwise it is set to zero. 

LOCAL d32, dl3, d21, rnum, rden, xsmall, ismall, yvalue, i, j 

FOR i = 1 TO 3 
xsmall = x(i) 
ismall = i 
FOR j = i TO 3 

IF xsmall > x(j) THEN 
xsmall = x(j) 
ismall = j 

END IF 
NEXT j 
SWAP x(i),x(ismall) 
SWAP y(i),y(ismall) 

NEXT i 
d32 =  x (3 ) -x (2 )  
dl3 = x(l)-x(3) 
dZl = x(2)-x(l) 
yvalue = y(l) + d21'-( y(l)-y(3) )/dl3 
IF yvalue > y(2) THEN flag = 0 ELSE flag = 1 
rnum = y( 1 )'''d32''<x(3)+x(2) )+y(2)"dl3''Kx(l)+x(3))+y(3) "d21"(x(2)+x( 1 ) ) 
rden = y(l)*d32 + y(2)*d13 + y(3)*d21 
xvalue = rnum/rden/2 

END SUB 'interp 
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DEF FNflagrange (blimit, pmean, arlO) 

' Given the value of the inner control limit, blimit, this function 
' computes the value of the outer control limit that will result in-
' control ARL of ARLo and computes and returns the value of ARL at 
' pmean. If a value for the outer limit cannot be found the function 
' adds a penalty to the value of the ARL at pmean. 

SHARED n.max, x.tol, y.tol 
LOCAL xlow, xl, x2, arlnull, arl 
CALL limit.app (arlO, blimit, xl, x2) 
CALL secant (xl, x2, n.max, x.tol, y.tol, arlO, arlnull, xlimit ) 

CALL init.matrix (blimit, xlimit, pmean) ' Initialize (l-Q) 
CALL arl( a(), n, arl) ' Compute ARL for pmean 
IF ABS(arlnuil-arlO)< 10*y.tol THEN 

FN flagrange = arl 
ELSE 

FN flagrange = arl + ABS(arlnull-arlO) 
END IF 

END DEF 'flagrange 
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SUB secant ( xl, x2, n.raax, x.tol, y.tol, arlO, arl, xlimit ) 

' Secant Method Routine 

Input: starting points: 
maximum number of iterations 
target average run length: 
tolerances : 
routine to initialize (I-Q): 
routine to compute ARL; 

xl and x2 
n. max 
arlO (for pmean=0) 
x.tol, y.tol 
init.matrix 
arl ( , , ) 

' Output: xlimit, and corresponding ARL, arl. 

SHARED AO, n, biimit, format3$ 
LOCAL f1, f2, f3, x3, k!, psec, qsec, zero 
zero = le-15 

CALL init.matrix (biimit, xl, 0) ' Compute ARL for xl 
CALL arl( A(), n, arl) 
fl=arl-arlO 
CALL init.matrix (biimit, x2, 0) ' Compute ARL for x2 
CALL arl( A(), n, arl) 
f2=arl-arl0 
IF ABS(f2)>ABS(fl) THEN 

SWAP xl,x2 
SWAP fl.f2 

END IF 

FOR k! = 1 TO n.max 
IF ABS(f2)<y.toi THEN 

xlimit=x2 
arl=f2+ar10 
EXIT SUB 

END IF 
s = f2/fl 
psec = (xl-x2)"s 

qsec = 1-s: 
» 

IF ABS(qsec) > zero THEN 
x3 = x2 -psec/qsec 
IF x3>6.0 then x3=6.0 
IF x3<blimit THEN x3=blimit 
IF ABS(x2-x3)<x.tol*ABS(x2) THEN 

xlimit = x2 
arl = f2 +arlO 
EXIT SUB 

END IF 
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CALL init.matrix (blimit, x3, 0) ' Compute ARL for x3 
CALL arl( AC), n, arl) 
f3=arl-arl0 
IF ABS(f3) > ABS(f2) THEN 

xl=x3: fl=f3 
ELSE 

xl=x2: fl=f2 
x2=x3: f2=f3 

END IF 
END IF 

f 

NEXT k! 
PRINT "No convergence after";k!;" iterations" 

END SUB ' secant 
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SUB arl ( array(2), n, ari.value ) 

' This routine computes the average run length given the array (l-Q) 
' Input: square array "arrayC , )" containing (I-Q) 
' array size, n 
' Output: average run length, ari.value 
' lower triangular array equivalent to "arrayC,)" 

LOCAL zero, irow, index, big, nrow, jcol, fctr, frmt$ 
zero = lE-10 
frtntS = "Largest possible pivot element //.//###//# in row ###" 
FOR irow = 1 TO N 

arrayCirow,0) = 1 

NEXT irow 
FOR irow = N TO 1 STEP -1 

index = 1 
big = ABSCarrayCindex,irow)) 
FOR nrow = 2 TO irow 

IF big < ABS(array(nrow,irow)) THEN 
big = ABS(array(nrow,irow)) 
index = nrow 

END IF 
NEXT nrow 
IF ABS(big) <= zero THEN 

PRINT "Error in SUB arl [...]: Pivot element is zero !!" 
PRINT USING frmt$; big, index 
STOP 

END IF 
FOR jcol = 0 TO irow 

SWAP array(index,jcol), arrayCirow,jcol) 
NEXT jcol 
FOR jcol = 0 TO irow-1 

arrayCirow,jcol) = arrayCirow,jcol)/arrayCirow,irow) 
NEXT jcol 
arrayCirow,irow) = 1 
FOR nrow = 1 TO irow-1 
fctr = arrayCnrow,irow) 

IF ABSCfctr) > zero THEN 
FOR jcol = 0 TO irow 
arrayCnrow, jcol) = arrayCnrow, jcol) - f:ctr*arrayCirow,jcol) 

NEXT jcol 
END IF 

NEXT nrow 
NEXT irow 
arl.value = arrayCl,0) 

END SUB 'arl 
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' Note: File "NORMAL.INC" contains a subroutine to compute cumulative 
' standard normal probabilities. 

$INCLUDE "NORMAL.INC" 
I 

1  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

I 

SUB init.matrix (blimit, xlimit, pmean) 

' Initialize A = (l-Q) matrix 

' Input: control limits: 
' process mean: 

' Output: A ( matrix [l-Q] ) 

SHARED AO, n 
LOCAL i, j, nsize, z#, pi#, p2#, p3#, 
LOCAL pb, po, pc 

xlimit, blimit 
pmean 

p4#, p5#, p6# 

Output from GS3411.BAS 
Non-absorbing states 

1 ) 000 2 ) OOB 3 ) OOC 
4 ) OBO 5 ) OBB 6 ) OBC 
7 ) OCO 8 ) OCB 9 ) OCC 
10 ) BOO 11 ) BOB 12 ) BOC 
13 ) BBO 14 ) BBC 
15 ) BCO 16 ) BCB 17 ) BCC 
18 ) COO 19 ) COB 20 ) COC 
21 ) CBO 22 ) CBB 23 ) CBC 
24 ) CCO 25 ) CCB 

+x + 
I B zone (2/3) 

+b + 

-+- - "ok" zone 

I 
-b H 

I C zone (2/3) 
-x h 

Z# 
z# = ( 
z# = ( 
z# = ( 

nsize 
FOR i 

FOR 
NEXT i 

( xlimit-pmean ) 
blimit-pmean ) 
blimit-pmean ) 
xlimit-pmean ) 
' n 
• 1 TO nsize 
j = 1 TO nsize 

pl/r - FNCDFnormal«'( zit ) 
p2# = FNCDFnormal#( z# ) 
p3# = FNCDFnormalfK z# ) 
p4# = FNCDFnormal#( z// ) 

a(i,j) = 0: 

pb=pl#-p2// 
po=p2#-p3# 
pc=p3#-p4// 

NEXT j 
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a( 1, l)=-po: a( 1, 2)=-pb: a( 1, 3) = -pc : 
a( 2, 4)=-po: a( 2, 5)=-pb: a( 2, 6) = -pc : 
a( 3, 7)=-po: a( 3, 8)=-pb: a( 3, 9)= -pc : 
a( 4, 10)=-po: a( 4, ll)=-pb: a( 4, 12)= -pc: 
a( 5, 13)=-po: a( 5, 14)=-pc: 
a( 6, 15)=-po: a( 6, 16)=-pb: a( 6, 17) = -pc: 
a( 7, 18)=-po: a( 7, 19)=-pb: a( 7, 20) = -pc; 
a( 8, 21)=-po: a( 8, 22)=-pb: a( 8, 23) = -pc: 
a( 9, 24)=-po: a( 9, 25)=-pb: 
ado, l)=-po: ado, 2)=-pb: ado. 3)=--pc: 
a(ll. 4)=-po: aCll, 6)=-pc: 
a(l2, 7)=-po: ad2. 8)=-pb: a(l2. 9)=--pc: 
a(13, 10)=-po: a(l3. 12)=-pc: 
a(l4, 15)=-po: a( 14, 17)=-pc: 
a(l5, 18)=-po: a( 15, 19)=-pb: a(l5. 20)=--pc: 
a(l6, 2l)=-po: a(l6. 23)=-pc: 
a( 17, 24)=-po: ad7. 25)=-pb: 
a(l8, l)=-po: a(l8. 2)=-pb: a(l8. 3)=--pc: 
a(l9, A)=-po: a(l9. 5)=-pb: ad9. 6)=--pc: 
a(20. 7)=-po: a(20. 8)=-pb: 
a(21. 10)=-po: a(21. ll)=-pb: a(21. 12)=-•pc: 
a(22. 13)=-po: a(22. 14)=-pc: 
a(23, 15)=-po: a(23. 16)=-pb: 
a(24. 18)=-po: a(24. 19)=-pb: 
a(25. 2l)=-po: a(25. 22)=-pb: 

FOR i=l TO nsize: a(i,i) = a(i,i) + 1: NEXT i 

END SUB 'init.matrix 

SUB limit.app (arlO, blimit, xl, x2) 
I 

' This subroutine returns approx. values for xlimit, xl and x2, given the 
' desired in-control ARL, arlO, and a value for blimit. 

f 

LOCAL arlln, xvalue 
arlln = LOG(arlO) 
xvalue = 0.67 + 0.286*blimitC2 + 1.527*arlln/blimitC2 
xvalue = xvalue - 0.03029*arlln - 3.87l/bliraitC2 
xl = FNfmax(xvalue-.10, blimit) 
x2 = FNfmaxCxvalue, blimit) + 0.10 

END SUB 'limit.app 

' END OF FILE * END OF FILE * END OF FILE * END OF FILE * END OF FILE * 
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Noel Artiles. September 1988. 
File: P3A11B.BAS 

AVERAGE-RUN-LENGTH CALCULATIONS 
RULES CONSIDERED IN THIS PROGRAM: 

Stop if 3/3 points fall in (-co, -b), or 
stop if 3/4 points fall in ( b, +oo), or 
stop if 1/1 point fall in (-oo,-x) U (x, +oo). 

This program generate the ARL curves corresponding to the optimal 
values of b and x. The in-control ARL considered are 100, 200, ..., 
500 and the process mean varies from 0.00 to 2.00 by 0.10. 

CLS 
DEFINT i-n 
DEFDBL a-h,o-z 
DEF FNfmax(x,y) 
DEF FNfmin(x,y) 
n = 25: 
n.max=50: 
x.tol=l.OD-10 
CALL init.normal 
DIM a(0:25, 0:25) 
DIM clim(3), arlout(3) 

' Define integer variables. 
' Define double prec. vars. 
' Define Max{} function 
' Definr Min{} function 

(l-Q) 
of iterations for secant method 
limit for secant method 

Initialize constants for Normal.prob. routine 
Matrix a contains (I-Q) matrix 

(x+y+abs(x-y))/2 
(x+y-abs(x-y))/2 

' Size of matrix 
' Maximum number 
' Tolerance in x 

OPEN "P3411A1.PRN" FOR OUTPUT AS #1 
FOR iarl = 100 TO 500 STEP 100 

arlO = iarl 
y.tol = arl0*(l.0E-8) 
arlOlog = LOG(arlO) 
blimit = -.18781 + 0.340719*LOG(arlO) - .0124218*LOG(arl0)C2 
xlimit = 10 
PRINT #1, USING "Control Limit = #.##//"; blimit 
FOR pmean = 0 to 2.01 step 0.05 

CALL init.matrix (blimit, xlimit, pmean) 
CALL arl( a(), n, arl) 
PRINT #1, USING " ##.## ####.###"; pmean, 
PRINT USING " //#.# //##.##"; pmean, 

NEXT pmean 
PRINT #1, 
PRINT 

NEXT iarl 

' Initialize (I-Q) 
' Compute ARL for pmean 
arl 
arl 

' Note: File "NORMAL.INC" contains a subroutine to compute cumulative 
' standard normal probabilities. 

$INCLUDE "NORMAL.INC" 
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• ** FILE: NORMAL.INC ** 
SUB init.normal 

' Subroutine to initialize constants used to compute 
' standard normal probabilities. 

SHARED pl//(), ql//(), p2#( ), q2#(), 
pl#(0)=2.42667955230531D2: 
pl#(1)=2.19792616182941D1: 
pl#(2)=6,99638348861913D0: 
pl#(3)=-3.56098437018153D-2: 
p2/'/(0)=3.0045926102016160D2: 
p2#(1)=4.5191895371187294D2: 
p2#(2)=3.3932081673434368D2: 
p2#(3)=1.5298928504694040D2: 
p2#(4)=4.3162227222056735Dl: 
p2#(5)=7.2117582508830936D0: 
p2#(6)=5.6419551747897397D-1: 
p2#(7)=-l.3686485738271677D-7: 
p3#(0)=-2.996007077035421D-3: 
p3#(1)=-4.947309106232507D-2: 
p3#(2)=-2.269565935396869D-1: 
p3#(3)=-2.786613086096478D-1: 
p3#(4)=-2.231924597341847D-2: 

END SUB ' init_norinai 

DEF FN erf# (%#) 

' This function evaluate the error function, for 0 <= x < 0.50: 

LOCAL fctr#, snum//, sden//, j% 
SHARED pl//(), ql//(), p2#( ), q2#(), p3#(), q3#() 

IF x# <0 OR x# >= 0.5 THEN 
CIS: BEEP 
PRINT Error: Invalid argument in function erf(x).": STOP 

END IF 
fctr# = 1 
snum# = 0 
sden# = 0 
FOR j'% = 0 TO 3 

snum# = snum# + pl#(j%)*fctr# 
sden# = sden# + ql#(j%)*fctr# 
fctr# = fctr#*x#*x# 

NEXT j% 
FN erf# = x#*snum#/sden# 

END DEF 'erf# 

p3#(). q3#() 
ql#(0)=2.15058875869861D2 
ql#(1)=9.11649054045149D1 
ql#(2)=1.50827976304078Dl 
ql#(3)=1.OOOOOOOOOOOOOODO 
q2#(0)=3.0045926095698329D2 
q2#(1)=7.9095092532789803D2 
q2#(2)=9.3135409A85060962D2 
q2#(3)=6.3898026446563117D2 
q2#(4)=2.7758544474398764D2 
q2#(5)=7.7000152935229473Dl 
q2#(6)=l.2782727319629424D1 
q2#(7)=1.OOOOOGOOOOOOOOOODO 
q3#(0)=1.062092305284679D-2 
q3#(1)=1.913089261078298D-1 
q3#(2)=l.O516751O7067932D0 
q3#(3)=1.987332018171353DO 
q3#(4)=1.000000000000000DO 
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DEF FN erfc//(x#) 

' This function evaluate the complementary error function, 
' for 0.46875 < = x 

LOCAL fctr#, snum//, s den#, j%, y// 
SHARED p l H ) ,  ql#(), p2#(), q2#( ), p3#( ), q3#( ) 

IF x//<.46875 THEN 
CLS: BEEP 
PRINT "*** Error: Invalid argument in function erfc(x)." 
STOP 

ELSEIF x#<4.000 THEN 
fctr# = 1: snum# = 0: sden# = 0 
FOR j% = 0 TO 7 

snum# = snum# + p2#(j%)*fctr# 
sden# = sden# + q2#(j%)-fctr# 
fctr# = fctr#*x# 

NEXT j% 
FN erfc# = EXP(-x#*x#)*snum#/sden# 

ELSE 
y# = l/x#/x#: fctr# = 1 
snum# = 0: sden# = 0 
FOR j% = 0 TO 4 

snum# = snum# + p3#(j%)*fctr# 
sden# = sden# + q3#(j%)*fctr# 
fctr# = fctr#/y#/y# 

NEXT j% 
FNerfc#=EXP(-x#'''x#)/x#'V(l/SQR(3.1415926#)+snum#/sden#/x#/x#) 

END IF 
END DEF 'erfc# 

DEF FN CDFnormal#(z#) 

' This function computes the CDF of a standard normal random variable 
I 

x# = Z#/SQR(2#)'x# is the argument used in erf(x) and erfc(x) routines 
IF x#<0 THEN x# = -x#: GOTO negative: 
IF x#>5.65 THEN FNCDFnormal# = 1#: EXIT DEF 
IF x#>=0 AND x#<.5# THEN FNCDFnormal# = (1+FN erf#(x#))/2: EXIT DEF 
IF x#>=.5 AND x#<=4 THEN FNCDFnormal# = (2-FNerfc#(x#))/2: EXIT DEF 
IF x#>4 AND x#<5.65 THEN FNCDFnormal# = (2-FNerfc#(x#))/2: EXIT DEF 
negative: 
IF x#> 5.65 THEN FN CDFnormal# = 0: EXIT DEF 
IF x#>=0 AND x#<.5# THEN FNCDFnormal# = (l-FNerf#(x#))/2: EXIT DEF 
IF x#>=.5 AND x#<=4 THEN FNCDFnormal# = FN erfc#(x#)/2: EXIT DEF 
IF x#>4 AND x#<5.65 THEN FNCDFnormal# = FN erfc#(x#)/2: EXIT DEF 
END DEF 'FN CDFnormal# 
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APPENDIX C: PROGRAM GENSTATE.BAS AND SUBROUTINES CHECKST.INC 
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FILE: GENSTATE.BAS 
Noel Artiles. August 1988. 

This program generates the possible states for the set of control rule 
given below and also the corresponding transition probabilities. 
NOTE: Only non-absorbing states are considered. 

C 

I 
+x += 

I 
+a += 

+b += 

j 
-b += 

I 
-a += 

-X += 

zone X: 1 out of 1 (+x, +oo) 

zone A: 2 out of 3 (+a, +oo) 

zone B: 3 out of 4 (+b, +oo) 

zone 0; 
ok. 

zone C: 3 out of 4 (-oo, -b) 

zone D: 2 out of 3 (-oo, -a) 

zone X: 1 out of 1 (-oo, -%) 

z$(l)="0": z$(2)="A": z$(3)="B" 
z$(4)="C": z$(5)="D" 
nstate = 0: CLS: nzone = 5 
flnm$="genstate.prn" 
OPEN flnm$ FOR OUTPUT AS #1 
DIM state$(lOO) 
PRINT //I, "Output from GS342311.BAS" 
PRINT //I, "Non-absorbing states ...": PRINT //l, 
FOR i = 1 TO nzone 

statel$=z$(l) 
FOR j=l TO nzone 

state2$=statel$+z$(j) 
FOR k = 1 TO nzone 

state3$=state2$+z$(K) 
IF FNicheck34( state3$ ) + FNicheck23( state3$ ) = 0 THEN 

' Print non-absorbing state 

nstate = nstate+1 
state$(nstate) = state3$ 
PRINT #1,nstate;") ";state3$, 

END IF 
NEXT k 
PRINT //I, 

NEXT j 
NEXT I 
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PRINT #1, 
PRINT "Press any key to continue ..." 
d$ = "" : WHILE d$ = D$=INKEY$: WEND 

F0RMAT1$="////## " 
F0RMAT2$="A(////\\##)=\ \: " 

PRINT #1,: PRINT //l, "Transition probabilities...": PRINT //l, 
FOR i = 1 TO nstate 

FOR k=l TO nzone 
ns$=RIGHT$(state$(i),2)+z$(k) 
IF FNicheck34( state$(i)+z$(k) ) = 0 THEN 

IF FNicheck23( ns$ ) =0 THEN 
FOR j = 1 TO nstate 

IF ns$ = state$(j) THEN 
PRINT #1,USING F0RMAT2$ ;i;",";j;"-P"+z$(k), 
GOTO nextk: 

END IF 
NEXT j 

END IF 
END IF 

nextk: 
NEXT k 

PRINT //I, 
NEXT i 
STOP 
END 

$INCLUDE "CHECKST.INC" 
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Noel Artiles. August 1988 
File: checkst.inc 

DEF FNiscanC s$, c$, k ) 

' This function scans the string s$ and search for the occurrence of the 
' character c$. If c$ appears AT LEAST k times in s$, the function returns 
' the value of 1, otherwise it returns the value of 0. 

LOCAL t$, icounter, ipos 
IF LEN(c$)<>l THEN 

PRINT "Error 1 in function FNiscan." 
STOP 

END IF 
IF LEN(s$) < LEN(c$) THEN 

PRINT "Error 2 in function FNiscan." 
STOP 

END IF 
IF K<1 or k> LEN(s$) THEN 

PRINT "Error 3 in function FNiscan." 
STOP 

END IF 

t$ = 5$ 
icounter = 0 
ipos = INSTRC t$, c$ ) 
WHILE ipos>0 

icounter = icounter + 1 
IF icounter >= k THEN 

FNiscan = 1 
EXIT DEF 

ELSE 
MIDS(t$, ipos, 1) = chr$(254) 

END IF 
ipos = INSTR( t$, c$ ) 

WEND 
FNiscan = 0 

END DEF 'iscan 
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DEF FNicheck23( s$ ) 

' This function checks whether 2 or more "A"s, or 2 or more "D"s appear in 
' the string s$; in this case the function returns the value of I, 
' otherwise it returns 0. 

IF FNiscan (s$, "A", 2) = 1 THEN 
FNicheck23 = 1 
EXIT DEF 

END IF 
IF FNiscan (s$, "D", 2) = 1 THEN 

FNicheck23 = 1 
EXIT DEF 

END IF 
FNicheck23 = 0 

END DEF 'FNicheck23 

DEF FNicheck34( s$ ) 

' This function returns the value of 1 if: 
' there are 3 or more ("A"s or "B"s) in s$, or 
' there are 3 or more ("D"s or "C"s) in s$. 
' otherwise it returns the value of 0. 

IF FNiscanC s$, "A" , 3) = 1 THEN FNicheck34=l : EXIT DEF 
IF FNiscanC s$, "B" , 3) = 1 THEN FNicheck34=l: EXIT DEF 
IF ( FNiscan(s$, "A" ,2)+FNiscan(s$, "BM)- = 2 ) THEN FNicheck34=l: EXIT DEF 
IF C FNiscanCs$, "A" ,1)+FNiscanC s$, "B",2) = 2 ) THEN FNicheck34=l; EXIT DEF 

IF FNiscanC s$, "D" , 3) = 1 THEN FNicheck34=l: EXIT DEF 
IF FNiscanC s$. "C" , 3) = 1 THEN FNicheck34=l: EXIT DEF 
IF C FNiscanCsé, "D" ,2)+FNiscanCs$, "CM) = 2 ) THEN FNicheck34=l: EXIT DEF 
IF C FNiscanCs$, "D" ,l)+FNiscanCs$, "C",2) = 2 ) THEN FNicheck34=l: EXIT DEF 

FNicheck34 = 0 
END DEF 'FNicheck34 
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APPENDIX D: PROGRAMS P3423A.BAS AND F3423B.BAS 
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Noel Ârtiles. September 1988. 
File; P3A23A.BAS 

AVERAGE-RUN-LENGTH CALCULATIONS 

RULES CONSIDERED IN THIS PROGRAM: 

Stop if 3/4 points fall in (-oo, -b), or 
stop if 3/4 points fall in ( b, +oo), or 
Stop if 2/3 points fall in (-oo, -x), or 
stop if 2/3 points fall in ( x, +oo). 

This program computes values for b and x that will result in a 
given in-control ARL, ARLO, and that minimize the out-of-control 
average run length (process mean = 1). 

CLS 
DEFINT i-n 
DEFSNG a-h,o-z 
DEF FNfmax(x,y) 
DEF FNfmin(x,y) 

(x+y+abs(x-y))/2 
(x+y-abs(x-y))/2 

Define integer variables, 
Define single prec. vars, 
Define Max{} function 
Definr Mint} function 

n = 91 
n.max=10: 
x.toi=1.0E-05 
CALL init.normal 
DIM a(0:91,0:91) 
DIM clim(3), arlout(3) 

Size of matrix (I-Q) 
Maximum number of iterations for secant method 
Tolerance in x.limit for secant method 
Initialize constants for Normal.prob. routine 
Matrix a contains (I-Q) matrix 

formatl$ = "B = //.##//// X = #.//## ARLzero = //##.//##//" 
format2$ = forraatl$+" ARLone = //////#.//#////" 

OPEN "P3423X1.PRN" FOR APPEND AS //l 

' Optimize for ARLo = 100, 150, 500 

FOR iarl = 400 TO 400 STEP 50 
arlO = iarl 
y.tol = arl0*(1.0E-6) 
pmean = 1.00 
PRINT USING " arlO = //##.//#"; arlO 
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' Define an initial set of values for the 
' inner limit (blimit) 
blimit = 1.03 + .79*ariO/lOOO 
FOR k = 1 TO 3 
clira(k) = blimit 
arlout(k) = FNflagrange (blimit, pmean, arlO ) 
blimit = blimit + 0.05 
print clim(k), arlout(k) 

NEXT k 
back: 
icounter = 1 
vlen = ABS( clim(3)-clim(l) ) 
WHILE (icounter < 500 AND vlen > .005 ) 
CALL interp ( climO, arloutO, flag, blimit) 
ysmall = arlout(l): ismall = 1 
FOR i = 2 TO 3 

IF ysmall > arlout(i) THEN 
ysmall = arlout(i) 
ismall = i 

END IF 
NEXT i 
print using "#//#.#//##// clim(ismall), ysmall 
vlen = ABS( clim(3)-clim(1) ) 
icounter = icounter + 1 

IF flag = 1 THEN ' If flag=l the function is not convex 
' in current interval. 

PRINT 
PRINT " Warning: Function is not convex in current interval." 
PRINT " Rerun the program with different starting points." 
PRINT 
FOR k = 1 TO 3 

print clim(k), arlout(k) 
NEXT k 
INPUT " Enter a new value for inner control limit: blimit 
arlout(l) = FNflagrange (blimit, pmean, arlO ) 
clim(l) = blimit 
GOTO back: 

I 

ELSE ' If function is convex in current interval, 
' replace worst control limit by the approximation 
' computed by subroutine "interp". 

aril = FNflagrange (blimit, pmean, arlO ) 
print using "#//#.#//### blimit, aril: print 
arlworst = arlout(l) 
iworst = 1 
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FOR i = 2 TO 3 
IF arlworst < arlout(i) THEN 

arlworst = arlout(i) 
iworst = i 

END IF 
NEXT i 
clim(iworst) = blimit 
arlout(iworst) = aril 

END IF 
WEND 

' Best inner control limit has been found. 
' Compute corresponding outer control limit. 

bestarl = arlout(l): ibest = 1 
FOR i = 2 TO 3 

IF bestarl > arlout(i) THEN 
bestarl = arlout(i) 
ibest = i 

END IF 
NEXT i 
blimit = clim(ibest) 
CALL limit.app (arlO, blimit, xl, x2) 
CALL secant (xl, x2, n.max, x.tol, y.tol, arlO, arl, xlimit ) 
PRINT //l, USING format2$; blimit, xlimit, arl, arloutCibest) 
PRINT USING format2$; blimit, xlimit, arl, arlout{ibest) 
PRINT 

NEXT iarl 
CLOSE //I 

PRINT "Done !!" 
END 
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SUB interp ( x(l), y(l), flag, xvalue ) 

' This function uses quadratic interpolation to approximate the 
' minimum of a function. If the set of points (xl,yl), (x2,y2), 
' and (x3, y3) does not fall on a convex function the value of 
' flag is set to 1, otherwise it is set to zero. 

LOCAL d32, dl3, d21, rnum, rden, xsmall, ismall, yvalue, i, j 

FOR i = 1 TO 3 
xsmall = x(i) 
ismall = i 
FOR J = i TO 3 

IF xsmall > x(j) THEN 
xsmall = x(j) 
ismall = j ?.. 

END IF 
NEXT j 
SWAP x(i),x(ismall) 
SWAP y(i),y(ismall) 

NEXT i 
d32 = x(3)-x(2) 
dl3 = x(l)-x(3) 
d21 = x(2)-x(l) 
yvalue = y(l) + d21*( y(l)-y(3) )/dl3 
IF yvalue > y(2) THEN flag = 0 ELSE flag = 1 
rnum = y(l)*d32*(x(3)+x(2))+y(2)*dl3*(x(l)+x(3))+y(3)*d21*(x(2)+x(1)) 
rden = y(l)*d32 + y(2)*dl3 + y(3)*d21 
xvalue = rnum/rden/2 

END SUB 'interp 
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DEF FNflagrange (blimit, pmean, arlO) 

' Given the value of the inner control limit, blimit, this function 
' computes the value of the outer control limit that will result 
' in-control ARL of ARLo and computes and returns the value of ARL 
' at pmean. If a value for the outer limit cannot be found the 
' function adds a penalty to the value of the ARL at pmean. 

SHARED n.max, x.tol, y.tol 
LOCAL xlow, xl, x2, arlnull, arl 
CALL limit.app (arlO, blimit, xl, x2) 
CALL secant (xl, x2, n.max, x.tol, y.tol, arlO, arlnull, xlimit ) 

CALL init.matrix (blimit, xlimit, pmean) ' Initialize (I-Q) 
CALL arlC a(), n, arl) ' Compute ARL for pmean 
IF ABS(arlnull-arlO)< 10*y.tol THEN 

FN flagrange = arl 
ELSE 

FN flagrange = arl + ABS(arInull-ar10) 
END IF 

END DEF 'flagrange 
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I 

SUB secant ( xl, x2, n.max, x.tol, y.tol, ariO, arl, xlimit ) 

' Secant Method Routine 

Input: starting points: 
maximum number of iterations 
target average run length: 
tolerances : 
routine to initialize (I-Q): 
routine to compute ARL: 

xl and x2 
n.max 
arlO (for pmean=0) 
x.tol, y.tol 
init.matrix 
arl ( , , ) 

' Output: xlimit, and corresponding ARL, arl. 
I 

SHARED A(), n, blimit 
LOCAL f1, f2, f3, x3, k!, psec, qsec, zero, frat$ 
zero = le-15 
fmtS="secl: xl=//#.## fl=//###.//## x2=##.M# f2=##//.//##" 

CALL init.matrix (blimit, xl, 0) ' Compute ARL for xl 
CALL arl( A(), n, arl) 
fl=ari-arlO 
CALL init.matrix (blimit, x2, 0) ' Compute ARL for x2 
CALL arl( A(), n, arl) 
f2=arl-arl0 
IF ABS(f2)>ABS(f1) THEN 

SWAP xl,x2 
SWAP fl,f2 

END IF 

FOR k! =1 TO n.max 
'print using fmt$*, xl,fl,x2,f2 
IF ABS(f2)<y.tol THEN 

xlimit=x2 
arl=f2+arlO 
EXIT SUB 

END IF 
s = f2/fl 
psec = (xl-x2)*s 
qsec = 1-s: 

IF ABS(qsec) > zero THEN 
x3 = x2 -psec/qsec 
IF x3>6.0 
IF x3<blirait 
IF ABS(x2-x3)<x,tol'''ABS(x2) 

xlimit = x2 
arl = f2 +arlO 
EXIT SUB 

END IF 

THEN x3=6.0 
THEN x3=blimit 
THEN 
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CALL init.matrix (blimit, x3, 0) ' Compute ARL for x3 
CALL arl( A(), n, arl) 
f3=ar1-ar10 
IF ABS(f3) > ABS(f2) THEN 

xl=x3: fl=f3 
ELSE 

xl=x2: fl=f2 
x2=x3: f2=f3 

END IF 
END IF 

NEXT k! 
PRINT "No convergence after";k! ;" iterations" 
xlimit = x2 
arl = f2 +arlO 

END SUB ' secant 
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SUB arl ( array(2), n, arl.value ) 

' This routine computes the average run length given the array (l-Q) 
' Input: square array "array( , )" containing (l-Q) 
' array size, n 
' Output: average run length, arl.value 
' lower triangular array equivalent to "array(,)" 

LOCAL zero, irow, index, big, nrow, jcol, fctr, frmtS 
zero = lE-10 
frmtS = "Largest possible pivot element iLiHHHHHH in row //##" 

FOR irow = 1 TO N 
array(irow,0) = 1 

NEXT irow 

FOR irow = N TO 1 STEP -1 
index = 1 
big = ABS(array(index,irow)) 
FOR nrow = 2 TO irow 

IF big < ABS(array(nrow,irow)) THEN 
big = ABS(array(nrow,irow)) 
index = nrow 

END IF 
NEXT nrow 
IF ABS(big) <= zero THEN 

PRINT 
PRINT "Error in SUB arl Pivot element is zero !l" 
PRINT USING frmt$; big, index 
STOP 

END IF 
FOR jcol = 0 TO irow 

SWAP array(index,jcol), array(irow,jcol) 
NEXT jcol 
FOR jcol = 0 TO irow-1 

array(irow,jcol) = array(irow,jcol)/array(irow,irow) 
NEXT jcol 
array(irow,irow) = 1 
FOR nrow = 1 TO irow-1 
fctr = arrayCnrow,irow) 
IF ABS(fctr) > zero THEN 

FOR jcol = 0 TO irow 
arrayCnrow, jcol) = arrayCnrow, jcol )-fctr'-array(irow, jcol) 

NEXT jcol 
END IF 

NEXT nrow 
NEXT irow 
arl.value = array(l,0) 

END SUB 'arl 
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' Note; File "NORMAL.INC" contains a subroutine to compute cumulative 
' standard normal probabilities. 

SINCLUDE "NORMAL.INC" 

SUB init.matrix (blimit, xiimit, pmean) 
! 

' Initialize A = (I-Q) matrix 

' Input: control limits: xiimit, blimit 
' process mean: pmean 

' Output: A ( matrix [I-Q] ) 

' Output from GS342311.BAS 
' Non-absorbing states 

Notation : 

' 1) 000 2)  OCA 3) COB 4) OOC 5) OOD 
' 6) OAO 7) OAB 8) OAC 9) OAD 10) OBO C 

(2/3) ' 11) OBA 12) QBE 13) OBC 14) OBD 15) OCC 1 zone "A" (2/3) 

' 16) OCA 17) OCB 18) OCC 19) OCD 20) ODO 

' 21) ODA 22) ODB 23) ODC 24) AOO 25) AOB 1 
(3/4) ' 26) AOC 27) AOD 28) ABO 29) ABC 30) ABD 1 zone "B" (3/4) 

' 31) ACO 32) ACB 33) ACC 34) ACD 35) ADO 

• 36) ADB 37) ADC 38) BOO 39) BOA 40) BOB 1 

' 41) HOC 42) BOD 43) BAO 44) BAC 45) BAD 1 zone "0" 

• 46) BBO 47) BBC 48) BBD 49) BCO 50) BCA 1 
' 51) BCB 52) BCC 53) BCD 54) BDO 55) BDA 
' 56) BDB 57) BDC 58) COO 59) COA 60) COB 1 

(3/4) ' 61) COG 62) COD 63) CAO 64) CAB 65) CAC 1 zone "C" (3/4) 

' 66) CAD 67) CBO 68) CBA 69) CBB 70) CBC -  — —  —  

' 71) CED 72) CCO 73) CCA 74) CCB 75) CDO 1 
(2/3) ' 76) CDA 77) CDS 78) DOO 79) DOA so;  DOB 1 zone "D" (2/3) 

' 81) DOC 82) DAO 83) DAB 84) DAC 85) DBO 

' 86) DBA 87) DBS 88) DBC 89) DCO 90) DCA 
' 91) DCB 

SHARED A(), n 
LOCAL i, j, nsize, z#, pi#, p2#, p3#, p4#, p5#, p6# 
LOCAL pb, po, pc 

z// = ( xlimit-pmean): 
z# = ( blimit-pmean) : 
z# = (-blimit-pmean): 
z# = (-xlimit-pmean): 
nsize = 91 

pi// = FNCDFnormal#( 
p2# = FNCDFnormal#( 
p3// = FNCDFnormal#( 
p4// = FNCDFnormal#( 

z#) 
z#) 
z#) 
zir 

pa=l-pl# 
pb=pl?/-p2# 
po=p2//-p3# 
pc=p3#-p4# pd=p4# 
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IF nsizeon THEN 
PRINT "Error in SUB init.matrix ( , , incorrect matrix size," 
STOP 

END IF 
FOR i = 1 TO nsize 

FOR j = 1 TO nsize: a(i,j) = 0: NEXT j 
NEXT i 

a(l, l)=-po: a(l, 2)=-pa: a(l, 3)=-pb: a(l, A)=-pc: a(l, 5)=-pd: 
a(2, 6)=-po: a(2, 7)=-pb: a(2, 8)=-pc: a(2, 9)=-pd: 
a(3,10)=-po: a(3,ll)=-pa: a(3,12)=-pb: a(3,13)=-pc: a(3,14)=-pd: 
a(4,15)=-po: a(4,16)=-pa: a(4,17)=-pb: a(4,18)=-pc: a(4,19)=-pd: 
a(5,20)=-po: a(5,21)=-pa: a(5,22)=-pb: a(5,23)=-pc: 
a(6,24)=-po: a(6,25)=-pb: a(6,26)=-pc: a(6,27)=-pd: 
a(7,28)=-po: a(7,29)=-pc: a(7,30)=-pd: 
a(8,31)=-po: a(8,32)=-pb: a(8,33)=-pc: a(8,34)=-pd: 
a(9,35)=-po: a(9,36)=-pb: a(9,37)=-pc: 
a(l0,38)=-po: a(10,39)=-pa: a(10,40)=-pb: a(10,41)=-pc: a(lO,42)=-pd: 
a(ll,43)=-po: a(ll,44)=-pc: a(ll,45)=-pd: 
a(l2,A6)=-po; a(12,4?)=-pc: a(12,48)=-pd: 
a(l3,49)=-po; a(13,50)=-pa: a(13,5l)=-pb: a(l3,52)=-pc: a(13,53)=-pd: 
a(l4,54)=-po: a(l4,55)=-pa: a(14,56)=-pb: a(l4,57)=-pc: 
a(l5,58)=-po: a(l5,59)=-pa: a(15,60)=-pb: a(15,61)=-pc: a(l5,62)=-pd: 
a(l6,63)=-po: a(l6,64)=-pb: a(16,65)=-pc: a(l6,66)=-pd: 
a(l7,67)=-po: a(17,68)=-pa: a(17,69)=-pb: a(17,70)=-pc: a(17,71)=-pd: 
a(l8,72)=-po; a(18,73)=-pa: a(18,74)=-pb: 
a(l9,75)=-po: a(19,76)=-pa: a(19,77)=-pb: 
a(20,78)=-po: a(20,79)=-pa: a(20,80)=-pb: a(20,81)=-pc: 
a(21,82)=-po: a(21,83)=-pb: a(21,84)=-pc: 
a(22,85)=-po: a(22,86)=-pa: a(22,87)=-pb: a(22,88)=-pc: 
a(23,89)=-po: a(23,90)=-pa: a(23,91)=-pb; 
a(24, l)=-po: a(24, 2)=-pa: a(24, 3)=-pb: a(24, 4)=-pc: a(24, 5)=-pd: 
a(25,10)=-po: a(25,13)=-pc: a(25,14)=-pd: 
a(26,15)=-po: a(26,16)=-pa: a(26,17)=-pb: a(26,18)=-pc: a(26,19)=-pd: 
a(27,20)=-po: a(27,2l)=-pa: a(27,22)=-pb: a(27,23)=-pc: 
a(28,38)=-po: a(28,4l)=-pc: a(28,42)=-pd: 
a(29,49)=-po: a(29,52)=-pc: a(29,53)=-pd: 
a(30,54)=-po: a(30,57)=-pc: 
a(31,58)=-po: a(31,59)=-pa: 3(31,60)=-pb: a(31,61)=-pc: a(31,62)=-pd: 
a(32,67)=-po: a(32,70)=-pc: a(32,71)=-pd: 
a(33,72)=-po: a(33,73)=-pa: a(33,74)=-pb: 
a(34,75)=-po: a(34,76)=-pa: a(34,77)=-pb: 
a(35,78)=-po: a(35,79)=-pa: a(35,80)=-pb: a(35,81)=-pc: 
a(36,85)=-po: a(36,88)=-pc: 
a(37,89)=-po: a(37,90)=-pa: a(37,91)=-pb: 
a(38, l)=-po: a(38, 2)=-pa: a(38, 3)=-pb: a(38, 4)=-pc: a(38, 5)=-pd: 
a(39, 6)=-po: a(39, 8)=-pc: a(39, 9)=-pd; 
a(40,10)=-po: a(40,13)=-pc: a(40,14)=-pd: 
a(41,15)=-po: a(41,16)=-pa: a(41,17)=-pb: a(41,18)=-pc: a(41,19)=-pd: 
a(42,20)=-po: a(42,21)=-pa: a(42,22)=-pb: a(42,23)=-pc: 



www.manaraa.com

166 

a(43,24)--po: a(43,26)=-pc: a(A3,27)=-pd: 
a(44,31)=-po: a(44,33)=-pc: a(44,34)=-pd: 
a(45,35)=-po: a(45,37)=-pc: 
a(46,38)=-po: a(46,41)=-pc: a(46,42)=-pd: 
a(47,49)=-po: a(47,52)=-pc: a(47,53)=-pd: 
a(48,54)=-po: a(48,57)=-pc: 
a(49,58)=-po: a(49,59)=-pa: a(49,60)=-pb: a(49,6l)=-pc: a(49,62)=-pd: 
a(50,63)=-po: a(50,65)=-pc: a(50,66)=-pd: 
a(51,67)=-po: a(51,70)=-pc: a(51,71)=-pd: 
a(52,72)=-po: a(52,73)=-pa: a(52,74)=-pb: 
a(53,75)=-po: a(53,76)=-pa: a(53,77)=-pb: 
a(54,78)=-po: a(54,79)=-pa: a(54,80)=-pb: a(54,8l)=-pc: 
a(55,82)=-po: a(55,84)=-pc: 
a(56,85)=-po: a(56,88)=-pc: 
a(57,89)=-po: a(57,90)=-pa: a(57,91)=-pb; 
a(58, l)=-po: a(58, 2)=-pa: a(58, 3)=-pb: a(58, 4)=-pc: a(58, 5)=-pd: 
a(59, 6)=-po: a(59, 7)=-pb: a(59, 8)=-pc: a(59, 9)=-pd: 
a(60,10)=-po: a(60,ll)=-pa: a(60,12)=-pb: a(60,13)=-pc: a(60,14)=-pd: 
a(61,15)=-po: a(61,16)=-pa: a(61,17)=-pb: 
a(62,20)=-po: a(62,21)=-pa: a(62,22)=-pb: 
a(63,24)=-po: a(63,25)=-pb: a(63,26)=-pc: a(63,27)=-pd: 
a(64,28)=-po: a(64,29)=-pc: a(64,30)=-pd: 
a(65,31)=-po: a(65,32)=-pb: 
a(66,35)=-po: a(66,36)=-pb: 
a(67,38)=-po: a(67,39)=-pa: a(67,40)=-pb: a(67,41)=-pc: a(67,42)=-pd: 
a(68,43)=-po: a(68,44)=-pc: a(68,45)=-pd: 
a(69,46)=-po: a(69,47)=-pc: a(69,48)=-pd: 
a(70,49)=-po: a(70,50)=-pa: a(70,5l)=-pb: 
a(71,54)=-po: a(71,55)=-pa: a(71,56)=-pb; 
a(72,58)=-po: a(72,59)=-pa: a(72,60)=-pb: 
a(73,63)=-po: a(73,64)=-pb: 
a(74,67)=-po: a(74,68)=-pa: a(74,69)=-pb: 
a(75,78)=-po: a(75,79)=-pa: a(75,80)=-pb: 
a(76,82)=-po: a(76,83)=-pb: 
a(77,85)=-po: a(77,86)=-pa: a(77,87)=-pb: 
a(78, l)=-po: a(78, 2)=-pa: a(78, 3)=-pb; a(78, 4)=-pc: a(78, 5)=-pd: 
a(79, 6)=-po: a(79, 7)=-pb: a(79, 8)=-pc: a(79, 9)=-pd: 
a(80,10)=-po: a(80,ll)=-pa; a(80,12)=-pb: a(80,13)=-pc; a(80,14)=-pd; 
a(81,15)=-po: a(81,16)=-pa: a(81,17)=-pb: 
a(82,24)=-po: a(82,25)=-pb: a(82,26)=-pc: a(82,27)=-pd: 
a(83,28)=-po: a(83,29)=-pc: a(83,30)=-pd; 
a(84,3I)=-po: a(84,32)=-pb: 
a(85,38)=-po: a(85,39)=-pa: a(85,40)=-pb: a(85,41)=-pc: a(85,42)=-pd: 
a(86,43)=-po: a(86,44)=-pc; a(86,45)=-pd: 
a(87,46)=-po: a(87,47)=-pc: a(87,48)=-pd: 
a(88,49)=-po: a(88,50)=-pa: a(88,51)=-pb: 
a(89,58)=-po: a(89,59)=-pa: a(89,60)=-pb: 
a(90,63)=-po: a(90,64)=-pb: 
a(91,67)=-po: a(91,68)=-pa: a(91,69)=-pb: 
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FOR i=l TO nsize 
a(i,i) = a(i,i) + 1 

NEXT i 

END SUB ' init.matrix 

SUB limit.app( ariO,blimit,al,a2 ) 
» 

' This subroutine return approx. values for Alimit.al and a2,given the 
' desired in-control ARL,arlO,and a value for Blimit. 
I 

LOCAL arlln,xvalue,denom 
arlln = LOG(arlO) 
denom = (arl0/blimit06) - 55 
avaiue = 0.6177 + 0.191 "arlln + 1 ..2898/blimitC5 - 4.6912/denom 
al = FNfmaxC avalue-0.15,blimit ) 
a2 = FNfmaxC xvalue,blimit ) +0.15 

END SUB ' limit.app 

' END OF FILE END OF FILE END OF FILE END OF FILE END OF FILE 
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Noel Artiles. September 1988. 
File: P3A23B.BAS 

AVERAGE-RUN-LENGTH CALCULATIONS 

RULES CONSIDERED IN THIS PROGRAM: 

Stop if 3/4 points fall in (-oo, -b), or 
stop if 3/4 points fall in ( b, +oo), or 
Stop if 2/3 points fall in (-oo, -x), or 
stop if 2/3 points fall in ( x, +oo). 

This program computes values for b and x that will result in a 
given in-control ARL, ARLO, and that minimize the out-of-control 
average run length (process mean = 1). 

CLS 
DEFINT i-n 
DEFSNG a-h,o-z 
DEF FNfmax(x,y) 
DEF FNfmin(x,y) 

(x+y+abs(x-y))/2 
(x+y-abs(x-y))/2 

Define integer variables. 
Define single prec. vars. 
Define Max{} function 
Define Min{} function 

n = 91 
n.max=10: 
x.tol=l.OE-05 
CALL init.normal 
DIM a(0:91,0:9l) 

Size of matrix (I-Q) 
Maximum number of iterations for secant method 
Tolerance in x.limit for secant method 
Initialize constants for Normal.prob. routine 
Matrix a contains (I-Q) matrix 

DIM clim(3), ariout(3) 
OPEN "P3423X2.PRN" FOR OUTPUT AS //l 
FOR iarl = 100 TO 500 STEP 100 

arlO = iarl 
y.tol = arlO*(1.OE-6) 
blimit = -.0319887527+.3182770169*LOG(arlO)-.011882544*LOG(arlO)c2 
CALL limit.app (arlO, blimit, xl, x2) 
CALL secant (xl, x2, n.max, x.tol, y.tol, arlO, arl, xlimit ) 
PRINT: PRINT #1, 
PRINT USING " b = #,### x = //#.## ' 
PRINT //I, USING " b = //#.//##// x = ////.////# ' 
FOR pmean = 0.00 to 2.01 STEP .05 

CALL init.matrix( blimit, xlimit, pmean) 
arlval) 

blimit, xlimit 
blimit, xlimit 

CALL arl ( a(), 
PRINT USING 
PRINT #1, USING 

NEXT pmean: 
NEXT iarl 
CLOSE #1: 
END 

##.### 

PRINT 

pmean, 
pmean, 

arlval 
arlval 

PRINT "Done !!" 
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' Note: File "NORMAL.INC" contains a subroutine to compute cumulative 
' standard normal probabilities. 

$INCLUDE "NORMAL.INC" 

SUB limit.app( ar10,blimit,al,a2 ) 

' This subroutine return approx. values for Alimit,ai and a2,given the 
' desired in-control ARL,arlO,and a value for Blimit. 

LOCAL arlln,xvalue,denom 
a value = 0.269-'LOG(arlO) + 0.624 
al = FNfmax( avalue-O.02,blimit ) 
a2 = FNfmax( xvalue,blimit ) + 0.02 

END SUB ' limit.app 

' END OF FILE END OF FILE END OF FILE END OF FILE END OF FILE 
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XII. APPENDIX E: PROGRAMS P342311A.BAS AND P342311B.BAS 
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Noel Artiles. September 1988. 
File: P342311A.BAS 

AVERAGE-RUN-LENGTH CALCULATIONS 

RULES CONSIDERED IN THIS PROGRAM: 

(-00, -b), .. 
( b, +oo), or 

Stop if 3/4 points fail in 
stop if 3/4 points fall in \ uu/, v.. 
stop if 2/3 points fall in ( a, +oo), or 
stop if 2/3 points fall in (-oo, -a), or 
stop if 1/1 point fall in (-oo,-x) U (x, +oo). 

This program finds values for a, b and x that will result in a 
given in-control ARL, ARLO, and that give a minimum value for the 
out-of-control average run length. 

CLS 
DEFINT i-n 
DEFSNG a-h,o-z 
DEF FNfinax(x,y) = (x+y+abs(x-y))/2 
DEF FNfmin(x,y) = (x+y-abs(x-y))/2 

Define integer variables. 
Define single prec. vars. 
Define Max{} function 
Definr Min{} function 

n = 91 : 
n.max=10: 
x.tol=l.OE-5 
CALL init.normAl 
DIM a(0:91,0:91) 

Size of matrix (I-Q) 
Maximum number of iterations for secant method 
Tolerance in x.limit for secant method 
Initialize constants for Normal.prob. routine 
Matrix a contains (I-Q) matrix 

formatl$="B = //,### 
format2$=formatl$ 

A = //.//#// X = //.### ARLzero = //#//.////////" 
ARLone = ////#.###" 

forinat3$="Xl = ##.#### F(X1)= ####.# X2 = ##.#### F(X2)= //##.#" 
format4$="» ARLzero = ////#,// BLIMIT = #.////# ALIMIT = ////.////// « " 

for iarl = 450 to 500 step 50 
I 

flnraS = "F34XB" + RIGHT$( STR$(iarl),3 ) + ".PRN" 
OPEN flnm$ FOR APPEND AS #1 
PRINT "Writting to file ";flnm$ 
arlO = iarl 
y. toi = arlO'-.00001 
bvalue = 0.19*LOG(arlO)+0.33 
b.lo = bvalue - 0.07 
b.hi = bvalue + 0.05 
avalue = 0,23'''LOG(arl0)+0.94 
a.hi = avalue + 0.10 
a.lo = avalue - 0.12 

Tolerance in ARL for secant method 
Initial value for blimit 

Initial value for a limit 
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FOR biimit = b.lo TO b.hi STEP 0.01 
arllast = le+30 
index = 1 

FOR alimit = a.hi TO a.lo step -0.01 
pmean = 0 ' Process mean 
PRINT 
PRINT USING format4$; arlO, biimit, alimit 
PRINT 
CALL limit.app( arlO, alimit, biimit, xl, x2 ) 
CALL secant (xl, x2, n.max, x.tol, y.toi, arlO, arl, xlimit ) 
IF ABS(arl-arl0)<10*y.tol THEN 

PRINT "Exact control limits ..." 
arl.temp = arl 
pmean = 1Î 

CALL init.matrix (alimit, biimit, xlimit, pmean) 
CALL arl( a(), n, arl) 
PRINT USING format2$; biimit,alimit,xlimit,arl. temp, arl 
PRINT #1,USING format2$; biimit,alimit,xlimit,arlO , arl 
PRINT 
IF arl > arllast THEN 

IF index >= 3 THEN GOTO nextblimit: 
index = index + 1 

END IF 
arllast = arl 

ELSE 
GOTO nextblimit: 

END IF 

NEXT alimit 
nextblimit: 
PRINT 
PRINT #1, 

NEXT biimit 
CLOSE //l 
NEXT iarl 

PRINT "Done 1!" 
END 
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SUB secant ( xl, x2, n.max, x.tol, y.tol, arlO, arl, xlimit ) 

' Secant Method Routine 

' Input: starting points: xl and x2 
' maximum number of iterations : n.max 
' target average run length: arlO (for pinean=0) 
' tolerances: x.tol, y.tol 
' routine to initialize (l-Q): init.matrix 
' routine to compute ARL: arl ( , , ) 

' Output: xlimit, and corresponding ARL, arl. 

SHARED A(), n, alimit, blimit, format3$ 
LOCAL f1, f2, f3, x3, k!, psec, qsec, zero 
zero = l.OE-15 

CALL init.matrix (alimit, blimit, xl, 0) ' Compute ARL for xl 
CALL ari( A(), n, arl) 
fl=arl-arlO 

CALL init.matrix (alimit, blimit, x2, 0) ' Compute ARL for x2 
CALL arl( A(), n, arl) 
f2=ar1-arlO 
IF ABS(f2)>ABS(fl) THEN 

SWAP xl,x2 
SWAP fl,f2 

END IF 
FOR k! =1 TO n.max 

IF ABS(f2)<y.tol THEN 
xlimit=x2 
arl=f2+arl0 

PRINT "Tolerance for ARL satisfied ..." 
EXIT SUB 

END IF 
PRINT USING format3$; xl,fl,x2,f2 
s = f2/fl 
psec = (xl-x2)'fs 
qsec = 1-s: 

IF ABS(qsec) > zero THEN 
x3 = x2 -psec/qsec 
IF x3>8.0 THEN x3=8.0 
IF x3<aLimit THEN x3=alimit 
CALL init.matrix (alimit, blimit, x3, 0) 
CALL arl( A(), n, arl) 
IF ABS(x2-x3)<x.tol*ABS(x2) THEN 

xlimit = x3 

PRINT "Tolerance for XLIMIT satisfied ..." 
EXIT SUB 

END IF 
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f3=arl-ar10 
IF ABSCfS) > ABS(f2) THEN 

xl=x3: fl=f3 

ELSE 
xl=x2: fl=f2 
x2=x3: f2=f3 

END IF 
END IF 

NEXT k! 
'PRINT "No convergence after";k!;" iterations" 

END SUB ' secant 
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SUB limit,app ( arlO, alimit, blimit, xl, x2 ) 

Subroutine to find starting points for secant routine 

INPUT; desired ARL; 
control limits: 

OUTPUT: starting points for secant method; 

ARLO 
ALIMIT, BLIMIT 
XI, X2 

LOCAL xvalue, ratio 
ratio = FNfmin( 900, (-25 + arl0/blimiti?6)ç2 ) 
xvalue- 2.8384 - 2.1885*L0G(blimit) + 0.6271''-LOG(arlO) - 0.249l*alimit 
xvalue= xvalue - 0.059644"SQR( 900 - ratio ) 
xl = xvalue - 0.10 
x2 = xvalue + 0.10 
IF x2 > 5 THEN xl = 4.00: x2 = 5.00 

END SUB 'limit.app 

' Notes: [1] File "P342311.INC" contains a subroutine to initialize 
' the matrix (l-Q) given the control limits. 
' [2] File "NORMAL.INC" contains a subroutine to compute 
' cumulative standard normal probabilities. 

$INCLUDE "P342311.INC" 
$INCLUDE "NORMAL.INC" 

' END OF FILE ** END OF FILE END OF FILE ** END OF FILE 
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Noel Artiles. September 1988. 
File; P342311B.BAS 

AVERAGE-RUN-LENGTH CALCULATIONS 

RULES CONSIDERED IN THIS PROGRAM: 

Stop if 3/4 points fall in (-oo, -b), or 
stop if 3/4 points fall in ( b, +oo), or 
stop if 2/3 points fall in ( a, +oo), or 
stop if 2/3 points fall in (-oo, -a), or 
stop if 1/1 point fall in (-oo,-x) U (x, +oo). 

This program computes the optimal ARL curve (as a function of 
shift in the process mean) for given in-control ARL values of 
100, 200, ,, 500. 

CLS 

DEFINT i-n ' Define integer variables. 
DEFSNG a-h,o-z ' Define single prec. vars. 
DEF FNfmax(x,y) = (x+y+abs(x-y))/2 ' Define Max{} function 
DEF FNfmin(x,y) = (x+y-abs(x-y))/2 ' Definr Min{} function 

n = 91 : 

n.raax=10: 
x.tol=l.OE-5 
CALL init.normAl 
DIM a(0:91,0:91) 

Size of matrix (I-Q) 
Maximum number of iterations for secant method 
Tolerance in x.limit for secant method 
Initialize constants for Normal.prob. routine 
Matrix a contains (I-Q) matrix 

formatl$="B .= //.## A = //.//////// X = #.### ARLzero = ##.//#////" 
format2$=formatl$+" ARLone = //##.//##//" 
format3$="Xl = //#.//## F(X1)= ###.#// X2 = //#.#### F(X2)= ##//.#" 
format4$="BLIMIT = #.//# ALIMIT = ##.#// XLIMIT = 
format5$=" #.### ###.###" 

OPEN "F34XOXX1.PRN" FOR APPEND AS #1 
for iarl = 100 to 500 step 100 

arlO = iarl 

y.tol = ar10*.00001 ' Tolerance in ARL for secant method 
blimit = 0.3511 + 0.1839*LOG(arlO) 
alimit = 0.8779 + 0.2404=vLOG(arl0) 
xl = 0.9012 + 0.5276'"-LOG(arlO) 
x2 = xl + 0.01 

pmean = 0 ' Process mean 
PRINT 
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CALL secant (xl, x2, n.max, x.tol, y.tol, arlO, arl, xlirait ) 
PRINT 
PRINT //I, 
IF ABS(arl-arlO)<5'''y.tol THEN 

PRINT #1, USING format4$; blirait, aiiinit, xiimit 
PRINT #1, 
PRINT #1, " Process Mean ARL " 
PRINT #1, USING format5$; pmean, arl 
PRINT USING format4$; blimit, alimit, xiimit 
PRINT 
PRINT " Process Mean ARL " 
PRINT USING format5$; pmean, arl 

FOR pmean = 0.05 TO 2.5 STEP 0.10 
CALL init.matrix (alimit, blimit, xiimit, pmean) 
CALL arl( a(), n, arl) 
PRINT USING format5$; pmean, arl 
PRINT #1,USING formatSS; pmean, arl 

NEXT pmean 

ELSE 
PRINT " Xiimit cannot be found !" 
CLOSE //l 
STOP 

END IF 
NEXT iarl 
PRINT 
PRINT " Done ! !" 
CLOSE #1 
END 

Notes: [1] File "P342311.INC" contains a subroutine to initialize 
the matrix (I-Q) given the control limits. 

[2] File "NORMAL.INC" contains a subroutine to compute 
cumulative standard normal probabilities. 

$INCLUDE "P342311.INC" 
$INCLUDE "NORMAL.INC" 

' END OF FILE ** END OF FILE ** END OF FILE ** END OF FILE 
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FILE: P342311.INC 
I 

SUB init.matrix (alimit, blimit, xlimit, praean) 

Initialize A = (I-Q) matrix 

Input: control limits: 
process mean: 

Output: A ( matrix [I-Q] ) 

alimit, blimit, xlimit 
pmean 

Output from GS34231 i .*3AS 
Non-absorbing states 

Notation: 

I 

' 1)000 2)00A 3)00B 4)00C 5)OOD 
' 6)OAO 7) OAS 8)0AC 9)0AD 10)OBO 
' 11)0BA 12)0BB 13)0BC 14)0BD 15)0C0 
' 16)0CA 17)0CB 18)0CC 19)0CD 20)ODO 
' 21)ODA 22)ODB 23)ODC 24)AOO 25)AOB 
' 26)A0C 27)AOD 28)ABO 29)ABC 30)ABD 
' 31)AC0 32)ACB 33)ACC 34)ACD 35)ADO 
' 36)ADB 37)ADC 38)BOO 39)BOA 40)BOB 
' 41)B0C 42)B0D 43)BAO 44)BAC 45)BAD 
' 46)BB0 47)BBC 48)BBD 49)BCO 50)BCA 
' 51)BCB 52)BCC 53)BCD 54)BDO 55)BDA 
' 56)BDB 57)BDC 58)COO 59)COA 60)COB 
' 61)C0C 62)COD 63)CAO 64)CAB 65)CAC 
' 66)CAD 67)CBO 68)CBA 69)CBB 70)CBC 
' 71)CBD 72)CCO 73)CCA 74)CCB 75)CDO 
' 76)CDA 77)CDB 78)DOO 79)DOA 80)D0B 
' SDDOC 82)DAO 83)DAB 84)DAC 85)DB0 
' 86)DBA 87)DBB 88)DBC 89)DCO 90)DCA 
' 91)DCB 

i zone "X" 

! zone "A" 

(1/1) 

(2/3) 

zone "B" (3/4) 

zone "0' 

zone "C" (3/4) 

zone "D" (2/3) 

zone "X" (1/1) 

SHARED AO, n 
LOCAL i, j, nsize, z#, pi#, p2//, p3#, p4#, p5#, p6# 
LOCAL pb, po, pc 

z# = ( xlimit-pmean): pO# = FNCDFnormal#( z#) 
z// = ( alimit-pmean) : pi# = FNCDFnormal#( z#) : pa=pO#-pl# 
z# = ( blimit-pmean): p2# = FNCDFnormal#( z#) : pb=pl#-p2# 
z# = (-blimit-pmean): p3# = FNCDFnormal#( z#) : po=p2#-p3# 
z# = (-alimit-pmean): p4# = FNCDFnormal#( z#) : pc=p3//-p4# 
z# = (-xlimit-pmean): p5# = FNCDFnormal#( z#) : pd=p4#-p5# 
nsize = 91 

IF nsizeon THEN 
PRINT "Error in SUB init,matrix ( , , ): incorrect matrix size." 
STOP 

END IF 
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FOR = 1 TO 
FOR j = 1 

NEXT i 

a( 1 1) = -po 

a 2 6)= -po 
a 3 10)= -po 
a 4 15) = -po 

a 5 20) = -po 

a 6 24) = -po 

a 7 28) = -po 
a 8 31) = -po 
a 9 35) = -po 
a 10 38) = -po 
a 11 43) = -po 
a 12 46) = -po 
a 13 49) = -po 

a 14 54) = -po 
a 15 58)= -po 

a 16 63) = -po 

a 17 67) = -po 
a 18 72) = -po 

a 19 75) = -po 

a 20 78) = -po 
a 21 82) = -po 

a 22 85)= -po 

a 23 89) = -po 
a 24 1) = -po 

a 25 10) = -po 
a 26 15) = -po 

a 27 20) = -po 

a 28 38) = -po 

a 29 49) = -po 

a 30 54) = -po 
a 31 58) = -po 

a 32 67) = -po 

a 33 72) = -po 

a 34 75) = -po 

a 35 78) = -po 
a 36 85)= -po 

a 37 89) = -po 
a 38 l) = -po 

a 39 6) = -po 
a 40 10)= -po 

a 41 15)= -po 
a 42 20)= -po 

a 43 24)= -po 

a 44 31)= -po 

a 45 35)= -po 

nsize 
TO nsize: a(i,j) = 0: NEXT j 

a 1 2 =-pa a( 1, 3 
= -pb: 

a 2 7 =-pb a( 2, 8 
= -pc: 

a 3 11 =-pa a( 3,12 
= -pb: 

a 4 16 =-pa a( 4,17 -pb: 

a 5 21 =-pa a( 5,22 = -pb: 

a 6 25 =-pb a( 6,26 
= -pc: 

a 7 29 =-pc a( 7,30 
= 
-pd 

a 8 32 =-pb a( 8,33 
= 
-pc: 

a 9 36 =-pb a( 9,37 
= -pc : 

a 10 39 =-pa ado,40 
= 
-pb: 

a 11 44 =-pc adl,45 -pd 

a 12 47 =-pc a ( l 2 , 4 8  = -pd 
a 13 50 =-pa ad3,51 

= -pb: 

a 14 55)=-pa a(14,56 
= -pb: 

a 15 59 =-pa ad5,60 
= -pb; 

a 16 64 =-pb a(16,65 
= 
-pc: 

a 17 68 =-pa ad7,69 
= -pb: 

a 18 73 =-pa ad8,74 
= -pb: 

a 19 76 =-pa a ( l 9 , 7 7  
= 
-pb: 

a 20 79 =-pa a(20,80 
= -pb: 

a 21 83 =-pb a(21,84 
= -pc : 

a 22 86 =-pa a(22,87 
= -pb: 

a 23 90 =-pa a(23,91 
= -pb: 

a 24 3 =-pb a(24, 4 
= -pc : 

a 25 13 =-pc a(25,14 
= -pd 

3 26 17 =-pb a(26,lB 
= -pc ; 

a 27 22 =-pb a(27,23 
= 
-pc: 

a 28 41 =-pc a(28,42 
= 
-pd 

a 29 52 =-pc a(29,53 = -pd 

a 30 57 =-pc 

a 31 60 =-pb a(31,61 
= 
-pc: 

a 32 70 =-pc a(32,71 
= -pd 

a 33 74 =-pb 

a 34 77 =-pb 

a 35 80 =-pb a(35,81 
= 
-pc: 

a 36 88 =-pc 

a 37 91 =-pb 

a 38 2 =-pa a(38, 3 
= -pb: 

a 39 8 =-pc a(39, 9 
= -pd 

a 40 13 =-pc a(40,14 -pd 

a 41 16 =-pa a(41,17 = -pb; 

a 42 21 =-pa a(42,22 -pb: 

a 43 26 =-pc a(43,27 
= -pd 

a 44 33 =-pc a(44,34 
= 
-pd 

a 45 37 =-pc 

a( 1, 4)= 
a( 2, 9)= 
a( 3,13)= 
a( 4,18)= 

-pc: a( 1, 5)=-pd 

-pd 
-pc; a( 3,14)=-pd 
-pc; a( 4,19)=-pd 

-pc; 
-pd 

a( 8,34)=-pd 

a(10,4l)=-pc: a(l0,42)=-pd 

a(13,52)=-pc: a(l3,53)=-pd 

a(i4,57)=-pc: 
a(15,61)=-pc: a(15,62)=-pd 

a(I6,66)=-pd 
a(l7,70)=-pc: a(l7,71)=-pd 

a(20,81)=-

a(22,88)=-

a(24, 5)=-

a(26.19)=-

pc: 

pc: 

pd 

pd 
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a(46.38)= =-p a(46,41)= -pc ; a(46,42)= -pd 
a(47,49)= —p a(47,52)= -pc a(47,53)= -pd 
a(48,54)= -po a(48,57)= -pc 
a(49,58)= -po a(49,59)= -pa a(49,60)= -pb: 
a(50,63)= -po a(50,65)= -pc a(50,66)= -pd 
a(51,67)= -po a(51,70)= -pc a(51,7i)= -pd 
a(52,72)= -po a(52,73)= -pa a(52,74)= -pb: 
a(53,75)= -po a(53,76)= -pa a(53,77)= -pb: 
a(54,78)= -po a(54,79)= -pa a(54,80)= -pb: 
a(55,82)= -po a(55,84)= -pc 

-pb: 

a(56,35)= -po a(56,88)= -pc 
a(57,89)= -po a(57,90)= -pa a(57,91)= -pb: 
a(58, I)= -po a(58, 2)= -pa a(58, 3)= -pb: 
a(59, 6)= -po a(59, 7)= -pb a(59, 8)= -pc: 
a(60,10)= -po a(60,11)= -pa a(60,12)= -pb: 
a(61,15)= -po a(61,16)= -pa a(61,17)= -pb: 
a(62,20)= -po a(62,21)= -pa a(62,22)= -pb: 
a(63.24)= -po a(63,25)= -pb a(63,26)= -pc: 
a(64,28)= -po a(64,29)= -pc a(64,30)= -pd 
a(65,31)= -po a(65,32)=--pb 
a(66,35)= -po a(66,36)=--pb 
a(67,38)= -po a(67,39)=--pa a(67,40)=--pb: 
a(68,43)= -po a(68,44)=--pc a(68,45)=--pd 
a(69,46)= -po a(69,47)=-•pc a(69,48)=-•pd 
a(70,49)= -po a(70,50)=--pa a(70,51)=-•pb: 
a(71,54)= -po a(71,55)=-•pa a(71,56)=--pb: 
a(72,58)=--po a(72,59)=-•pa a(72,60)=-•pb: 
a(73,63)=--po a(73,64)=-•pb 
a(74,67)=--po a(74,68)=- pa a(74,69)=- pb: 
a(75,78)=--po a(75,79)=- pa a(75,80)=- pb: 
a(76,82)=--po a(76,83)=-pb 

pb: 

a(77,85)=-•po a(77,86)=-pa a(77,87)=-pb: 
a(78, 1)=--po a(78, 2)=- pa a(78, 3)=- pb: 
a(79, 6)=-•po a(79, 7)=-pb a(79, 8)=-pc: 
a(80,10)=-•po a(80,ll)=-pa a(80,12)=-pb: 
a(81,15)=-•po a(81,16)=-pa a(81,17)=-pb: 
a(82,24)=- po a(82,25)= -pi a(82,26) =-pc 
a(83,28)=-po a(83,29)= -pc 

=-pc 

a(84,3l)=- po a(84,32)= -pi 
a(85,38)=- po a(85,39)= -pa a(85,40) II 1 cr

 

a(86,43)=-po a(86,44)= -pc 

II 1 cr
 

a(87,46)=-po a(87,47)= -pc 
a(88,49)=-po a(88,50)= -pa a(88,51) =-pb 
a(89,58)=-po a(89,59)= -pa a(89,60) =-pb 
a(90,63)=-po a(90,64)= -pb 

=-pb 

a(91,67)=-po a(91,68)= -pa a(91,69) =-pb 

FOR i=l TO nsize: 
a(i,i) = a(i,i) + 1: 

END SUB 'init-matrix 
NEXT i 
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XIII. APPENDIX F: SIMULATION PROGRAMS AND SUBROUTINES 
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Noel Ârtiles-Leon. September 1988. 
FILE: DBLEXPl.BAS 

PROGRAM TO SIMULATE THE CONTROL SCHEME 
[1,1,3,+00],[2,3,2,+00],[4,5,1,+00],[8,8,0,+00]" 
( DOUBLE EXPONENTIAL DISTRIBUTION ) 

DEF FN fmax(x,y) = (x+y + ABS(X-Y)) 
DIM sampies(8), par(5), arl(lOOOO) 
CLS 
PI = 3.1415926 

/ 2  

nvctr 
ptype 
ptype$ 
rtypeS 
par(2) 

nruns 

8 ' Keep track of the last "nvctr" samples 
2 
"Double Exponential" 
"R1[1,1,3,+00],[2,3,2,+00],[4,5,1,+00],[8,8,0,+00]" 
SQR(2) 
1500 

OPEN "OUTSIM.PRN" 
par(l) =0.5 

FOR kmean = 1 to 2 
par(l) = 2'-par(l) 

PRINT //I, 
#1, 
# 1 ,  
#1, 
#1. 
= 1 

FOR 

' Set 
' Set 

APPEND 

rate = 

number 
AS #1 

SQR(2) (standard deviation = 1) 
of simulation runs = 1500 

PRINT 
PRINT 
PRINT 
PRINT 
FOR i 

Std. Dev. LoLimit UpperLim." 

ptype$, rtype$ 
USING "Parameters : ####.//### //###.//###"; par(l), par(2) 
USING "No. of runs: //#////#";nruns 
"Average 
to nruns 

arl(i) = 0 
flag = 0 
FOR j = 1 to nvctr 

samples(J) = 0 

NEXT j 
WHILE flag = 0 

CALL generate (ptype, parO, 2, xbar) 
update (xbar, samplesO, nvctr) 
checkll (samplesO, 3.0, flagl) 
check23 (samplesO, 2.0, flag2) 
check45 (samplesO, 1.0, flag3) 
check88 (samplesO, 0.0, flag4) 

(ptype, parO, 2, 
(xbar, samplesO, 
(samplesO, 3.0, 
(samplesO, 2.0, 
(samplesO, 1.0, 
(samplesO, 0.0, 

arl(i) = arl(i) + 1 
flag = flagl+flag2+fIag3+fiag4 

WEND 
NEXT i 

CALL 
CALL 
CALL 
CALL 
CALL 
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CALL bastat ( arlO, nruns, average, stddev) 
Iolimit = average - 1.96'"'stddev/SQR(nruns) 
uplimit = average + 1,96'"'stddev/SQR(nruns) 
PRINT #1, USING "#//#.average, stddev, iolimit, uplimit 

NEXT kmean 
PRINT "Done !" 
CLOSE #1 
END 
$INCLUDE "SIM.INC" 
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Noel Artiles-Leon. September 1988. 
FILE: DBLEXP2.BÂS 

PROGRAM TO SIMULATE THE CONTROL SCHEME 
[1,1,3.216,00], [2,3,1.962,00], [3,4,1.181,00] 
( DOUBLE EXPONENTIAL DISTRIBUTION ) 

DE F FN fniax(x,y) = (x+y + ABS(X-Y)) /2 
DIM samples(8), par(5), arl(lOOOO) 
CLS 
PI = 3.1415926 
nvctr = 4 ' Keep track of the last "nvctr" samples 
ptype = 2 

ptype$ = "Double Exponential" 
rtype$ = "R[1,1,3.216,00], [2,3,1.962,00], [3,4,1.181,00] " 
par(2) = SQR(2) ' Set rate = SQR(2) (standard deviation =1) 
nruns = 1500 ' Set number of simulation runs = 1500 
OPEN "OUTSIM.PRN" FOR APPEND AS #1 
par(l) = 0.5 

FOR kmean = 1 to 2 
par(l) = 2'-par(l) 

PRINT //I, 
PRINT #1, ptype$, rtype$ 
PRINT //I, USING "Parameters : ##.## ##.//#//"; par(l), par(2) 
PRINT #1, USING "No. of runs: ###";nruns 
PRINT #1, "Average Std. Dev. LoLimit UpperLim." 
FOR i = 1 to nruns 
arl(i ) = 0 
flag = 0 

FOR j = 1 to nvctr 
sampies(j) = 0 

NEXT j 
WHILE flag = 0 

CALL generate (ptype, parO, 2, xbar) 
CALL update (xbar, samplesO, nvctr) 
CALL checkll (samplesO, 3.126, flagl) 
CALL check23 (samplesO, 1.962, flag2) 
CALL check34 (samplesO, 1.181, flag3) 
arl(i) = arl(i) + 1 
flag = flagl + flag2 + flagS 

WEND 
NEXT i 
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CALL bastat I arlO, nruns, average, stddev) 
loiimit = average - 1.96*stddev/SQR(nruns) 
upiimit = average + 1.96*r>tddey/SQR(nruns) 
PRINT //l, USING "###.### average, stddev, loiimit, upiimit 

I 

NEXT kmean 
PRINT "Done !" 
CLOSE //I 
END 
$INCLUDE "SIM.INC" 
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Noel Artiles-Leon. September 1988. 
FILE: CAUCHTl.BAS 

PROGRAM TO SIMULATE THE CONTROL SCHEME 
[1,1,3,+00],12,3,2,+00],[4,5,1,+oo],[8,8,0,+oo]" 
(  C A U C H Y  D I S T R I B U T I O N  )  

DEF FN fniax(x,y) = (x+y + ABS(X-Y)) /2 
DIM samples(8), par(5). arl(lOOOO) 
CLS 
PI = 3.1415926 
nvctr = 8 ' Keep track of the last "nvctr" samples 
ptype = 3 
ptype$ = "Cauchy" 
rtypeS = "R1 [1,1,3,+oo], [2,3,2, +ooJ ,[4,5,1 ,+oo], [8,8,0,foo.1 " 
par(l) =0.50 ' Set mean 
par(2) = 0.5011 ' Set scale parameter 
nruns = 1500 ' Set number of simulation runs = 1500 
OPEN "OUTSIMXX.PRN" FOR APPEND AS #1 
PRINT //I, 
PRINT //I, ptype$, rtype$ 
PRINT H, USING "Parameters : par(l). par(2) 
PRINT #1, USING "No. of runs: ###";nruns 
PRINT //l, "Average Std. Dev. LoLimit UpperLim." 
FOR i = 1 to nruns 
arl(i) = 0 
flag = 0 
FOR j = 1 to nvctr 

samples(j) = 0 

NEXT j 
WHILE flag = 0 

CALL generate (ptype, parO, 2, xbar) 

CALL update (xbar, samples(), nvctr) 
CALL checkll (samples(), 3.0, flagl) 
CALL check23 (samplesO, 2.0, flag2) 
CALL check45 (samplesO, 1.0, flag3) 
CALL check88 (samplesO, 0.0, flag4) 
arl(i) = arl(i) + 1 
flag = flagl+fIag2+flag3+flag4 

WEND 
NEXT i 
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CALL bastat ( ariO, nruns, average, stddev) 
lolimit = average - 1.96*stddev/SQR(nruns) 
uplimit = average + 1.96*stddev/SQR(nruns) 
PRINT #1, USING "##.//#// average, stddev, lolimit, uplimit 

PRINT "Done !'• 
CLOSE #1 
END 
$INCLUDE "SIM.INC" 
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Noel Artiles-Leon. September 1988. 
FILE: CAUCHY2.BAS 

PROGRAM TO SIMULATE THE CONTROL SCHEME 
[1,1,3.216,00], [2,3,1.962,00], [3,4,1.181,oo] 
(  C A U C H Y  D I S T R I B U T I O N  )  

DEF FN fmax(x,y) = (x+y + ABS(X-Y)) /2 
DIM samples(8), par(5), ari(lOOOO) 
CLS 
PI = 3.1415926 
nvctr = 4 ' Keep track of the last "nvctr" samples 
ptype = 3 
ptypeS = "Cauchy" 
rtype$ = "R[1,1,3.216,oo], [2,3,1.962,oo], [3,4,1.181,oo]" 
par(l) =0.50 ' Set mean 
par(2) = 0.5011 ' Set scale parameter 
nruns = 1500 ' Set number of simulation runs = 1500 
OPEN "OUTSIMCA.PRN" FOR APPEND AS #1 

PRINT #1, 
PRINT #1, ptype$, rtype$ 
PRINT #1, USING "Parameters : //##.## #//#.##"; par(l), par(2) 
PRINT //I, USING "No. of runs; ###";nruns 
PRINT #1, "Average Std. Dev. LoLimit UpperLim." 
FOR i = 1 to nruns 

arl(i) = 0 
flag = 0 
FOR j = 1 to nvctr 

samplesCj) = 0 

NEXT J 

WHILE flag = 0 
CALL generate (ptype, parO, 2, xbar) 

CALL update (xbar, samplesO, nvctr) 

CALL checkll (samplesO, 3.216, flagl) 
CALL check23 (samplesO, 1.962, flag2) 
CALL check34 (samplesO, 1.181, flag3) 
arl(i) = arl(i) + 1 
flag = flagl + flag2 + flag3 

WEND 
LOCATE 12,1: PRINT par(l),i 

NEXT i 
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CALL bastat ( arlO, nruns, average, stddev) 
l o l i m i t  =  a v e r a g e  - 1.96" S t d d e v/SQR(nruns) 
uplimit = average + 1.96'"'stddev/SQR( nruns) 
PRINT //I, USING "###.//#// average, stddev, lolimit, uplimit 

PRINT "Done !" 
CLOSE //I 

END 
$INCLUDE "SIM.INC" 
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Noel Artiles-Leon. October 1988. 
FILE: ARMAI.BAS 

PROGRAM TO SIMULATE THE CONTROL SCHEME: 
[1,1,3,+00],[2,3,2,+00],[4,5,1,+oo],[8,8,0,+oo] 

( MIXED AUTOREGRESSIVE-MOVING AVERAGE PROCESS ) 

DEF FN fmax(x,y) = (x+y + ABSCX-Y)) /2 

DIM samplesCS), par(5), arl(lOOOO) 
CLS 
PI = 3.1415926 

nvctr = 8 ' Keep track of the last "nvctr" samples 
ptype$ = "A.R.M.A. (1)" 
rtype$ = "HI[1,1,3,+oo],[2,3,2,+oo],[4,5,1,+ooJ,[8,8,0,+oo]" 
DATA -0,938, 0.100, 0.10 
DATA -0.515, 1.200, 0.20 
DATA -0.024, 1.200, 0.40 
nruns = 1500 ' Set number of simulation runs = 1500 
OPEN "OUTARMA.PRN" FOR OUTPUT AS #1 

FOR k = 1 TO 3 
READ para, parb, sigma 
sigma = sqr(sigma) 

PRINT //I, 
PRINT #1, ptype$, rtype$ 
PRINT //I, USING "Parameters: //#.//## ////.##// #.##"; para,parb,sigma 
PRINT #1, USING "No. of runs: ###";nruns 
PRINT #1, "Average Std. Dev. LoLimit UpperLim." 
FOR i = 1 to nruns 
arl(i) = 0 
flag = 0 
FOR j = 1 to nvctr 

samples(j) = 0 

NEXT j 
WHILE flag = 0 

oldxbar = samples(l) 

CALL armai (xbar, oldxbar, enml, para, parb, sigma) 
CALL update (xbar, samplesO, nvctr) 
CALL checkll (samplesO, 3.0, flagl) 
CALL check23 (samplesO, 2.0, flag2) 
CALL check45 (samplesO, 1.0, flag3) 
CALL check88 (samplesO, 0.0, flagA) 
arl(i) = arl(i) + 1 
flag = flagl+flag2+flag3+flagA 

WEND 
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NEXT i 
CALL bastat ( arlO, nruns, average, stddev) 
lolimit = average - 1.96''fstddev/SQR(nruns) 
uplimit = average + 1.96'''stddev/SQR( nruns) 
PRINT #1, USING "##.## average, stddev, loiirait, uplimit 

NEXT k 
PRINT "Done !" 
CLOSE #1 
END 
$INCLUDE "SIM.INC" 
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Artiles-Leon. October 1988. 
FILE; ARMii2'.BAS 

PROGRAM TO SIMULATE THE CONTROL SCHEME: 
[1,1,3.216,00 ],[2,3,1.962,oo],[3,4,1.181,00] 
( MIXED AUTOREGRESSIVE-MOVING AVERAGE PROCESS ) 

DEF FN finax(x,y) = (x+y + ABS(X-Y)) /2 
DIM samplesCS), par(5), arl(lOOOO) 

CLS 
PI = 3.1415926 
nvctr = 4 ' Keep track of the last "nvctr" samples 
ptype$ = "A.R.M.A. (1)" 
rtype$ = "R1[1,1,3.216,oo],L2,3,1.962,ooJ,[3,4,1.181,ooJ" 

DATA -0.938, 0.100, 0.10 
DATA -0.515, 1.200, 0.20 
DATA -0.024, 1.200, 0.40 
nruns = 1500 ' Set number of simulation runs = 1500 
OPEN "0UTARMA4. PRN" FOR OUTPUT AS //l 
» 

FOR k = 1 TO 3 
READ para, parb, sigma 
sigma = sqr(sigma) 

PRINT //I, 
PRINT #1, ptypeS, rtype$ 
PRINT //I, USING "Parameters: //#.//## #.##//// //#.//#"; para,parb,sigma 
PRINT #1, USING "No. of runs: //##";nruns 
PRINT //l, "Average Std. Dev. LoLimit UpperLim." 
FOR i = 1 to nruns 
arl(i) = 0 
flag = 0 
FOR j = 1 to nvctr 

samples(J) = 0 

NEXT j 
WHILE flag = 0 

oldxbar = sampLes(l) 
CALL armai (xbar, oldxbar, enml, para, parb, sigma) 
CALL update (xbar, samplesO, nvctr) 
CALL checkll (samplesO, 3.216, flagl) 
CALL check23 (samplesO, 1.962, flag2) 
CALL check34 (samplesO, 1.181, flag3) 
arl(i) = arl(i) + 1 
flag = flagl+flag2+flag3 

WEND 
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NEXT i 
CALL bastat ( arlO, nruns^ average, stddev) 
lolimit = average - 1.96'''stddev/SQR(nruns) 
uplimit = average + 1.96*stddev/SQR(nruns) 
PRINT #1, USING "//#//.#//# average, stddev, lolimit, uplimit 

NEXT k 
PRINT "Done !" 
CLOSE //I 
END 
$INCLUDE "SIM. INC" 
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' Noel Artiles-Leon. September 1988. 
' FILE; SIM.INC 

' SUBROUTINES TO SIMULATE A CONTROL SCHEME 
' UNDER DIFFERENT ALTERNATIVE HYPOTHESES 

SUB generate (type, p(l), np, rndm) 

' This subroutine generates a random number according to a process 
' specified b y  the variable "type", p() is an array containing "np" 
' parameters necessary for the generation of the random number. 
' The random number is returned in the variable "rndm". 

LOCAL z, prob, t 
SHARED PI 
SELECT CASE type 

CASE 1 ' Normal distribution; p(l)=mean, p(2)=variance 
I 

z = SQR(-2*L0G(RND))*C0S(2*PIARND) 
rndm = SQR(p(2))*z+p(l) 

CASE 2 ' Double exponential distribution, p(l)=mean, p(2)=rate 
f 

prob = RND 
IF prob <=0.50 THEN 

t = LOG(2"prob)/p(2) 

ELSE 
t = -L0G(2'-(l-prob) )/p(2) 

END IF 
rndm = t + p(l) 
1 

CASE 3 ' Cauchy distribution, p(l)=mean, p(2)=shape parameter 
I 

prob = RND 
rndm = p(l) + p(2)*TAN(PI*(prob-l/2)) 

CASE ELSE 
PRINT "*** Error in FNgenerate: invalid argument" 
STOP 

END SELECT 
END SUB 'generate 
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SUB update (x, vector(l), n) 
LOCAL i 
FOR i = n TO 2 STEP -1 

vector(i) = vector(i-l) 
NEXT i 
vector(l) = X 

END SUB 'update 

SUB bastat ( array(l), n, fmean, stddev ) 

' This subroutine computes the mean and the standard deviation of the 
' n numbers stored in the array "array". 
I 

LOCAL i, sum 
IF n < 2 THEN PRINT Error in SUB bastat: n < 2": STOP 
sum = 0.0 
FOR i = 1 to n 

sum = sum + array(i) 

NEXT I 
fmean = sum/n 
sum = 0.0 
FOR i = 1 to n 

sum = sura + (array(i) - fmean)c2 

NEXT i 
stddev = SQR( sum / (n-1) ) 

END SUB 'bastat 

SUB check Cvector(l), n, k, a, b, flag) 

This subroutine sets the value of "flag" to 1 if there are k or 
more elements in the array "vectorO" in the interval (a,b). 
Otherwise, the value of "flag" is set to 0. 

LOCAL counter, i 
counter = 0 
flag = 0 

IF k > n THEN PRINT "*** Error in SUB check: k > n." : STOP 
IF a > b THEN PRINT "*** Error in SUB check: a > b." : STOP 
FOR i = 1 to n 

IF ( vector(i) > a AND vector(i) < b ) THEN counter - counter + 1 
NEXT i 
IF counter >= k THEN flag = 1 

END SUB' check 
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SUB checkll (vector(l), a, flag) 
I 

' This subroutine sets the value of "flag" to 1 if there is at 
' least one element in the array "vector" in the interval 
' (-oo,-a) u(+a, + 0 0 ) .  Otherwise the value of "flag" is set to 0 »  

» 

LOCAL big 
big = l.OE+30 
flag = 0 

IF a < 0 THEN PRINT "*** Error in SUB checkll: a is negative," ; STOP 
CALL check (vectorO, 1, 1 , a, big, flag) 
IF flag = 1 THEN EXIT SUB 
CALL check (vectorO, 1, l,-big,-a, flag) 

END SUB ' checkll 

SUB check23 (vector(l), a, flag) 

' This subroutine sets the value of "flag" to 1 if 
' i) 2 out of the first 3 elements of the array "vector" fall in the 
' interval (-00, -a), or 
' ii) 2 out of the first 3 elements of the array "vector" fall in the 
' interval (+a, + 0 0 ) .  
f 

LOCAL big 
big = l.OE+30 
flag = 0 

IF a < 0 THEN PRINT Error in SUB check23: a is negative." : STOP 
CALL check (vectorO, 3, 2, a, big, flag) 
IF flag = 1 THEN EXIT SUB 
CALL check (vectorO, 3, 2,-big,-a, flag) 

END SUB ' check23 
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SUB check34 (vector(l), a, flag) 

' This subroutine sets the value of "flag" to 1 if 
' i) 3 out of the first 4 elements of the array "vector" fall in the 
' interval (-oo, -a), or 
' ii) 3 out of the first 4 elements of the array "vector" fall in the 
' interval (+a, +oo). 

LOCAL big 
big = l.OE+30 
flag = 0 

IF a < 0 THEN PRINT "*** Error in SUB check23: a is negative." : STOP 
CALL check (vectorO, 4, 3, a, big, flag) 
IF flag = 1 THEN EXIT SUB 
CALL check (vectorO, 4, 3,-big,-a, flag) 

END SUB ' check34 

SUB check45 (vector(l), a, flag) 

' This subroutine sets the value of "flag" to 1 if 
' i) 4 out of the first 5 elements of the array "vector" fall in the 
' interval (-oo, -a), or 
' ii) 4 out of the first 5 elements of the array "vector" fall in the 
' interval (+a, +oo). 

LOCAL big 
big = l.OE+30 
flag = 0 

IF a < 0 THEN PRINT "*** Error in SUB check45: a is negative." : STOP 
CALL check (vectorO, 5, 4, a, big, flag) 
IF flag = 1 THEN EXIT SUB 
CALL check (vectorO, 5, 4,-big,-a, flag) 

END SUB ' check45 
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I 

SUB checkSS (vector(l), a, flag) 

' This subroutine sets the value of "flag" to 1 if 
' i) 8 out of the first 8 elements of the array "vector" fall in the 
' interval (-oo, -a), or _ 
' ii) 8 out of the first 8 elements of the àrray "vector" fall in the 
' interval (+a, +oo). 

LOCAL big 
big = l.OE+30 
flag = 0 

IF a < 0 THEN PRINT Error in SUB check88: a is negative." : STOP 
CALL check (vectorO, 8, 8, a, big, flag) 
IF flag = 1 THEN EXIT SUB 
CALL check (vectorO, 8, 8,-big,-a, flag) 

END SUB ' checkSS 

SUB armai( xn, xnml, enml, a, b, stddev) 
I 

' This subroutine generates random observations from a mixed auto-
' regressive-moving average process of order (1,1), that is, 
' xEn] = e[n] + b eCn-l] - a x[n-l], 
' where the e[i], i=l, 2 , . . .  are idependently normally distributed 
' with mean zero and standard deviation = std.dev. 
t 

SHARED PI 
en = SQR(-2*L0G(RND))*SIN(2*PI*RND)*stddev 
xn = en + b'-enml - a*xnml 
enml = en 

END SUB ' armai 
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